Comparative transcriptome findings reveal the neuroinflammatory network and potential biomarkers to early detection of ischemic stroke

Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J, Lindsay P. World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022;17:18–29.

Article  Google Scholar 

Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371:1612–23.

Article  Google Scholar 

Lu H, Meng Y, Han X, Zhang W. ADAM8 Activates NLRP3 inflammasome to promote cerebral ischemia-reperfusion injury. J Healthc Eng. 2021;2021:3097432.

Article  Google Scholar 

Ma R, Xie Q, Li Y, Chen Z, Ren M, Chen H, Li H, Li J, Wang J. Animal models of cerebral ischemia: a review. Biomed Pharmacother. 2020;131: 110686.

Article  Google Scholar 

Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;7:97.

Article  Google Scholar 

Müller S, Kufner A, Dell’Orco A, Rackoll T, Mekle R, Piper SK, Fiebach JB, Villringer K, Flöel A, Endres M, Ebinger M, Nave AH. Evolution of blood-brain barrier permeability in subacute ischemic stroke and associations with serum biomarkers and functional outcome. Front Neurol. 2021;12: 730923.

Article  Google Scholar 

Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15:192–9.

Article  Google Scholar 

Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of Angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8(5):471.

Article  Google Scholar 

Schroeter MR, Schneiderman J, Schumann B, Glückermann R, Grimmas P, Buchwald AB, Tirilomis T, Schöndube FA, Konstantinides SV, Schäfer K. Expression of the leptin receptor in different types of vascular lesions. Histochem Cell Biol. 2007;128(4):323–33.

Article  Google Scholar 

Aldinucci C, Palmi M, Sgaragli G, Benocci A, Meini A, Pessina F, Pessina GP. The effect of pulsed electromagnetic fields on the physiologic behaviour of a human astrocytoma cell line. Biochim Biophys Acta. 2000;1499:101–8.

Article  Google Scholar 

Morris DC, Chopp M, Zhang L, Lu M, Zhang ZG. Thymosin beta4 improves functional neurological outcome in a rat model of embolic stroke. Neuroscience. 2010;169:674–82.

Article  Google Scholar 

Leung CT, Yang Y, Yu KN, Tam N, Chan TF, Lin X, Kong RYC, Chiu JMY, Wong AST, Lui WY, Yuen KWY, Lai KP, Wu RSS. Low-dose radiation can cause epigenetic alterations associated with impairments in both male and female reproductive cells. Front Genet. 2021;12: 710143.

Article  Google Scholar 

Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 2020;1866: 165260.

Article  Google Scholar 

Li Y, Chu L, Liu C, Zha Z, Shu Y. Protective effect of GSK-3β/Nrf2 mediated by dimethyl fumarate in middle cerebral artery embolization reperfusion rat model. Curr Neurovasc Res. 2021;18:456–64.

Article  Google Scholar 

Dunn LL, Kong SMY, Tumanov S, Chen W, Cantley J, Ayer A, Maghzal GJ, Midwinter RG, Chan KH, Ng MKC, Stocker R. Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α). Arterioscler Thromb Vasc Biol. 2021;41(1):317–30.

Google Scholar 

Walter ERH, Ge Y, Mason JC, Boyle JJ, Long NJ. A coumarin-porphyrin FRET break-apart probe for heme oxygenase-1. J Am Chem Soc. 2021;143:6460–9.

Article  Google Scholar 

Huang CY, Chiang WC, Yeh YC, Fan SC, Yang WH, Kuo HC, Li PC. Effects of virtual reality-based motor control training on inflammation, oxidative stress, neuroplasticity and upper limb motor function in patients with chronic stroke: a randomized controlled trial. BMC Neurol. 2022;22:21.

Article  Google Scholar 

Ebright RY, Zachariah MA, Micalizzi DS, Wittner BS, Niederhoffer KL, Nieman LT, Chirn B, Wiley DF, Wesley B, Shaw B, Nieblas-Bedolla E, Atlas L, Szabolcs A, Iafrate AJ, Toner M, Ting DT, Brastianos PK, Haber DA, Maheswaran S. HIF1A signaling selectively supports proliferation of breast cancer in the brain. Nat Commun. 2020;11:6311.

Article  Google Scholar 

Amin N, Chen S, Ren Q, Tan X, Botchway BOA, Hu Z, Chen F, Ye S, Du X, Chen Z, Fang M. Hypoxia inducible factor-1α attenuates ischemic brain damage by modulating inflammatory response and glial activity. Cells. 2021;10:1359.

Article  Google Scholar 

Wang H, Xu X, Yin Y, Yu S, Ren H, Xue Q, Xu X. Catalpol protects vascular structure and promotes angiogenesis in cerebral ischemic rats by targeting HIF-1α/VEGF. Phytomedicine. 2020;78: 153300.

Article  Google Scholar 

Zheng X, Shen S, Wang A, Zhu Z, Peng Y, Peng H, Zhong C, Guo D, Xu T, Chen J, Ju Z, Geng D, Zhang Y, He J. Angiopoietin-like protein 4 and clinical outcomes in ischemic stroke patients. Ann Clin Transl Neurol. 2021;8:687–95.

Article  Google Scholar 

Liu YZ, Zhang C, Jiang JF, Cheng ZB, Zhou ZY, Tang MY, Sun JX, Huang L. Angiopoietin-like proteins in atherosclerosis. Clin Chim Acta. 2021;521:19–24.

Article  Google Scholar 

Qiu Z, Yang J, Deng G, Li D, Zhang S. Angiopoietin-like 4 promotes angiogenesis and neurogenesis in a mouse model of acute ischemic stroke. Brain Res Bull. 2021;168:156–64.

Article  Google Scholar 

Qiu Z, Yang J, Deng G, Fang Y, Li D, Zhang S. Angiopoietin-like 4 attenuates brain edema and neurological deficits in a mouse model of experimental intracerebral hemorrhage. Med Sci Monit. 2018;24:880–90.

Article  Google Scholar 

Bouleti C, Mathivet T, Coqueran B, Serfaty JM, Lesage M, Berland E, Ardidie-Robouant C, Kauffenstein G, Henrion D, Lapergue B, Mazighi M, Duyckaerts C, Thurston G, Valenzuela DM, Murphy AJ, Yancopoulos GD, Monnot C, Margaill I, Germain S. Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke. Eur Heart J. 2013;34:3657–68.

Article  Google Scholar 

Zhang B, Xu X, Chu X, Yu X, Zhao Y. Protective effects of angiopoietin-like 4 on the blood-brain barrier in acute ischemic stroke treated with thrombolysis in mice. Neurosci Lett. 2017;645:113–20.

Article  Google Scholar 

Zhang H, Rzechorzek W, Aghajanian A, Faber JE. Hypoxia induces de novo formation of cerebral collaterals and lessens the severity of ischemic stroke. J Cereb Blood Flow Metab. 2020;40:1806–22.

Article  Google Scholar 

Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, Liang X, Wang Z, Yuan Q, Vortmeyer A, Toomre D, Fuh G, Yan M, Kluger MS, Wu D, Min W. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033–42.

Article  Google Scholar 

Michalak S, Kalinowska-Lyszczarz A, Wegrzyn D, Thielemann A, Osztynowicz K, Kozubski W. The Levels of Circulating Proangiogenic Factors in Migraineurs. Neuromolecular Med. 2017;19:510–7.

Article  Google Scholar 

Höbaus C, Pesau G, Herz CT, Wrba T, Koppensteiner R, Schernthaner GH. Angiopoietin-2 and Survival in Peripheral Artery Disease Patients. Thromb Haemost. 2018;118:791–7.

Article  Google Scholar 

Chen J, Yu H, Song W, Sun K, Song Y, Lou K, Yang T, Zhang Y, Hui R. Angiopoietin-2 promoter haplotypes confer an increased risk of stroke in a Chinese Han population. Clin Sci (Lond). 2009;117:387–95.

Article  Google Scholar 

Crist AM, Zhou X, Garai J, Lee AR, Thoele J, Ullmer C, Klein C, Zabaleta J, Meadows SM. Angiopoietin-2 inhibition rescues arteriovenous malformation in a Smad4 hereditary hemorrhagic telangiectasia mouse model. Circulation. 2019;139:2049–63.

Article  Google Scholar 

Gorska E, Popko K, Stelmaszczyk-Emmel A, Ciepiela O, Kucharska A, Wasik M. Leptin receptors. Eur J Med Res. 2010;15(Suppl 2):50–4.

Article  Google Scholar 

Corem N, Anzi S, Gelb S, Ben-Zvi A. Leptin receptor deficiency induces early, transient and hyperglycaemia-independent blood-brain barrier dysfunction. Sci Rep. 2019;9:2884.

Article  Google Scholar 

Wu L, Sun D. Leptin receptor gene polymorphism and the risk of cardiovascular disease: a systemic review and meta-analysis. Int J Environ Res Public Health. 2017;14:375.

Article  Google Scholar 

Tang H, Zhang Z, Li ZK, Lin J, Fang DZ. Association of leptin receptor gene polymorphisms with genetic susceptibility to ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24:2128–33.

Article  Google Scholar 

Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16:407–20.

Article  Google Scholar 

Bernis ME, Schleehuber Y, Zweyer M, Maes E, Felderhoff-Müser U, Picard D, Sabir H. Temporal characterization of microglia-associated Pro- and anti-inflammatory genes in a neonatal inflammation-sensitized hypoxic-ischemic brain injury model. Oxid Med Cell Longev. 2022;2(2022):2479626.

Google Scholar 

Ma C, Yang L, Wang L. Correlation of serum C-peptide, soluble intercellular adhesion molecule-1, and NLRP3 inflammasome-related inflammatory factor interleukin-1β after brain magnetic resonance imaging examination with cerebral small vessel disease. Contrast Media Mol Imaging. 2022;27(2022):4379847.

Google Scholar 

Liu J, Ma W, Zang CH, Wang GD, Zhang SJ, Wu HJ, Zhu KW, Xiang XL, Li CY, Liu KP, Guo JH, Li LY. Salidroside inhibits NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway. Ann Transl Med. 2021;9:1694.

Article  Google Scholar 

Bian HJ, Xu SY, Li HQ, Jia JQ, Ye L, Shu S, Xia SN, Gu Y, Zhu X, Xu Y, Cao X. JLX001 ameliorates cerebral ischemia injury by modulating microglial polarization and compromising NLRP3 inflammasome activation via the NF-κB signaling pathway. Int Immunopharmacol. 2021;101: 108325.

Article  Google Scholar 

Saito A, Hayashi T, Okuno S, Nishi T, Chan PH. Oxidative stress affects the integrin-linked kinase signaling pathway after transient focal cerebral ischemia. Stroke. 2004;35(11):2560–5.

Article  Google Scholar 

Wani AA, Jafarnejad SM, Zhou J, Li G. Integrin-linked kinase regulates melanoma angiogenesis by activating NF-κB/interleukin-6 signaling pathway. Oncogene. 2011;30(24):2778–88.

Article  Google Scholar 

Zhao J, Xu C, Cao H, Zhang L, Wang X, Chen S. Identification of target genes in neuroinflammation and neurodegeneration after traumatic brain injury in rats. PeerJ. 2019;19(7): e8324.

Article  Google Scholar 

Berger A. Th1 and Th2 responses: what are they? BMJ. 2000;321(7258):424.

Article  Google Scholar 

Choi JK, Yu CR, Bing SJ, Jittayasothorn Y, Mattapallil MJ, Kang M, Park SB, Lee HS, Dong L, Shi G, Caspi RR, Egwuagu CE. IL-27-producing B-1a cells suppress neuroinflammation and CNS autoimmune diseases. Proc Natl Acad Sci U S A. 2021;118(47): e2109548118.

Article  Google Scholar 

Gu Y, Wu Y, Chen L. GP6 promotes the development of cerebral ischemic stroke induced by atherosclerosis via the FYN-PKA-pPTK2/FAK1 signaling pathway. Adv Clin Exp Med. 2021;30:823–9.

Article  Google Scholar 

Xue YL, Zhang SX, Zheng CF, Li YF, Zhang LH, Hao YF, Wang S, Li XW. Silencing of STAT4 protects against autoimmune myocarditis by regulating Th1/Th2 immune response via inactivation of the NF-κB pathway in rats. Inflammation. 2019;42:1179–89.

Article 

Comments (0)

No login
gif