Type A cholesterol-dependent cytolysins translocate to the trans-Golgi network for NLRP3 inflammasome activation

Peraro, M. D. & van der Goot, F. G. Pore-forming toxins: ancient, but never really out of fashion. Nat. Rev. Microbiol. 14, 77–92 (2016).

Article  CAS  Google Scholar 

Hotze, E. M. & Tweten, R. K. Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim. Biophys. Acta 1818, 1028–1038 (2012).

Article  PubMed  CAS  Google Scholar 

Gonzalez, M. R. et al. Pore-forming toxins induce multiple cellular responses promoting survival. Cell. Microbiol. 13, 1026–1043 (2011).

Article  PubMed  CAS  Google Scholar 

Jing, W., Lo Pilato, J., Kay, C. & Man, S. M. Activation mechanisms of inflammasomes by bacterial toxins. Cell. Microbiol. 23, e13309 (2021).

Article  PubMed  CAS  Google Scholar 

Ellemor, D. M. et al. Use of genetically manipulated strains of Clostridium perfringens reveals that both α-toxin and θ-toxin are required for vascular leukostasis to occur in experimental gas gangrene. Infect. Immun. 67, 4902–4907 (1999).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Awad, M. M., Ellemor, D. M., Boyd, R. L., Emmins, J. J. & Rood, J. I. Synergistic effects of α-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect. Immun. 69, 7904–7910 (2001).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Heffernan, B. J., Thomason, B., Herring-Palmer, A. & Hanna, P. Bacillus anthracis anthrolysin O and three phospholipases C are functionally redundant in a murine model of inhalation anthrax. FEMS Microbiol. Lett. 271, 98–105 (2007).

Article  PubMed  CAS  Google Scholar 

Takeuchi, D. et al. The contribution of suilysin to the pathogenesis of Streptococcus suis meningitis. J. Infect. Dis. 209, 1509–1519 (2014).

Article  PubMed  CAS  Google Scholar 

Stavru, F., Bouillaud, F., Sartori, A., Ricquier, D. & Cossart, P. Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc. Natl Acad. Sci. USA 108, 3612–3617 (2011).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Braun, J. S. et al. Pneumolysin causes neuronal cell death through mitochondrial damage. Infect. Immun. 75, 4245–4254 (2007).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mesquita, F. S. et al. Endoplasmic reticulum chaperone Gp96 controls actomyosin dynamics and protects against pore‐forming toxins. EMBO Rep. 18, 303–318 (2017).

Article  PubMed  CAS  Google Scholar 

Malet, J. K., Cossart, P. & Ribet, D. Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins. Cell. Microbiol. 19, e12682 (2017).

Article  PubMed  Google Scholar 

Nozawa, T. et al. Intracellular group a streptococcus induces golgi fragmentation to impair host defenses through streptolysin O and NAD-glycohydrolase. mBio https://doi.org/10.1128/mbio.01974-20 (2021).

Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

Article  PubMed  CAS  Google Scholar 

Pandey, A., Shen, C., Feng, S. & Man, S. M. Cell biology of inflammasome activation. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2021.06.010 (2021).

Witzenrath, M. et al. The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J. Immunol. 187, 434–440 (2011).

Article  PubMed  CAS  Google Scholar 

Fang, R. et al. Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. J. Immunol. 187, 4890–4899 (2011).

Article  PubMed  CAS  Google Scholar 

Yamamura, K. et al. Inflammasome activation induced by perfringolysin O of Clostridium perfringens and its involvement in the progression of gas gangrene. Front. Microbiol. 10, 2406 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Chu, J. et al. Cholesterol-dependent cytolysins induce rapid release of mature IL-1β from murine macrophages in a NLRP3 inflammasome and cathepsin B-dependent manner. J. Leukoc. Biol. 86, 1227–1238 (2009).

Article  PubMed  PubMed Central  CAS  Google Scholar 

McNeela, E. A. et al. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog. 6, e1001191 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Katsnelson, M. A., Rucker, L. G., Russo, H. M. & Dubyak, G. R. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J. Immunol. 194, 3937–3952 (2015).

Article  PubMed  CAS  Google Scholar 

Munoz-Planillo, R. et al. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen, J. & Chen, Z. J. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564, 71–76 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hotze, E. M. et al. Monomer-monomer interactions propagate structural transitions necessary for pore formation by the cholesterol-dependent cytolysins. J. Biol. Chem. 287, 24534–24543 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Farrand, A. J., LaChapelle, S., Hotze, E. M., Johnson, A. E. & Tweten, R. K. Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc. Natl Acad. Sci. USA 107, 4341–4346 (2010).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gross, O. Measuring the inflammasome. Methods Mol. Biol. 844, 199–222 (2012).

Article  PubMed  Google Scholar 

Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

Article  PubMed  CAS  Google Scholar 

Balla, T. & Varnai, P. Visualizing cellular phosphoinositide pools with GFP-fused protein-modules. Sci. STKE 2002, pl3 (2002).

Article  PubMed  Google Scholar 

Mathur, A. et al. Clostridium perfringens virulence factors are nonredundant activators of the NLRP3 inflammasome. EMBO Rep. 24, e54600 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Valeriani, R. G., Beard, L. L., Moller, A., Ohtani, K. & Vidal, J. E. Gas gangrene-associated gliding motility is regulated by the Clostridium perfringens CpAL/VirSR system. Anaerobe 66, 102287 (2020).

Article  PubMed  CAS  Google Scholar 

Vidal, J. E., Shak, J. R. & Canizalez-Roman, A. The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms. Infect. Immun. 83, 2430–2442 (2015).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Walker, J. A., Allen, R. L., Falmagne, P., Johnson, M. K. & Boulnois, G. J. Molecular cloning, characterization, and complete nucleotide sequence of the gene for pneumolysin, the sulfhydryl-activated toxin of Streptococcus pneumoniae. Infect. Immun. 55, 1184–1189 (1987).

Article  PubMed 

Comments (0)

No login
gif