A novel CAT method for QoL screening: proof-of-principle study with comparisons to standard methods

Breiman, F. (2017). Classification and Regression Trees. Taylor & Francis. https://doi.org/10.1201/9781315139470

Choi, S. W., Reise, S. P., Pilkonis, P. A., Hays, R. D., & Cella, D. (2010). Efficiency of static and computer adaptive short forms compared to full-length measures of depressive symptoms. Quality of Life Research, 19(1), 125–136. https://doi.org/10.1007/s11136-009-9560-5

Article  PubMed  Google Scholar 

Fayers, P. M. (2007). Applying item response theory and computer adaptive testing: the challenges for health outcomes assessment. Quality of Life Research, 16(1), 187–194. https://doi.org/10.1007/s11136-007-9197-1

Article  PubMed  Google Scholar 

Finkelman, M. D., He, Y., Kim, W., & Lai, A. M. (2011). Stochastic curtailment of health questionnaires: a method to reduce respondent burden. Statistics in Medicine, 30(16), 1989–2004. https://doi.org/10.1002/sim.4231

Article  PubMed  Google Scholar 

Finkelman, M. D., Smits, N., Kim, W., & Riley, B. (2012). Curtailment and stochastic curtailment to shorten the CES-D. Applied Psychological Measurement, 36(8), 632–658. https://doi.org/10.1177/0146621612451647

Article  Google Scholar 

Flens, G., Smits, N., Terwee, C. B., Dekker, J., Huijbrechts, I., & Beurs, E. (2017). Development of a Computer Adaptive Test for Depression Based on the Dutch-Flemish Version of the PROMIS Item Bank. Evaluation and the Health Professions, 40(1), 79–105. https://doi.org/10.1177/0163278716684168

Article  PubMed  Google Scholar 

Gibbons, R. D., Chattopadhyay, I., Meltzer, H. Y., Kane, J. M., & Guinart, D. (2022). Development of a computerized adaptive diagnostic screening tool for psychosis. Schizophrenia Research, 245, 116–121. https://doi.org/10.1016/j.schres.2021.03.020

Article  PubMed  Google Scholar 

Gibbons, R. D., Hooker, G., Finkelman, M. D., Weiss, D. J., Pilkonis, P. A., Frank, E., Moore, T., & Kupfer, D. J. (2013). The CAD-MDD: A computerized adaptive diagnostic screening tool for depression. Journal of Clinical Psychiatry, 74(7), 669–674. https://doi.org/10.4088/JCP.12m08338

Article  PubMed  Google Scholar 

Gibbons, C., Porter, I., Gonçalves-Bradley, D. C., Stoilov, S., Ricci-Cabello, I., Tsangaris, E., Gangannagaripalli, J., Davey, A., Gibbons, E. J., Kotzeva, A., Evans, J., Wees, P. J., Kontopantelis, E., Greenhalgh, J., Bower, P., Alonso, J., & Valderas, J. M. (2021). Routine provision of feedback from patient-reported outcome measurements to healthcare providers and patients in clinical practice. Cochrane Database Systematic Reviews. https://doi.org/10.1002/14651858.CD011589.pub2

Article  Google Scholar 

Gibbons, R. D., & Wang, P. S. (2023). The science of psychiatric measurement. Psychiatric Annals, 53(9), 400–404. https://doi.org/10.3928/00485713-20230818-01

Article  Google Scholar 

Gibbons, R. D., Weiss, D. J., Frank, E., & Kupfer, D. (2016). Computerized adaptive diagnosis and testing of mental health disorders. Annual Review of Clinical Psychology, 12, 83–104. https://doi.org/10.1146/annurev-clinpsy-021815-093634

Article  PubMed  Google Scholar 

Greenhalgh, J. (2009). The applications of PROs in clinical practice: what are they, do they work, and why? Quality of Life Research, 18(1), 115–123. https://doi.org/10.1007/s11136-008-9430-6

Article  PubMed  Google Scholar 

Hagenaars, J.A.P., McCutcheon, A.L. (eds.): Applied Latent Class Analysis. Cambridge University Press, (2002).https://doi.org/10.1017/CBO9780511499531

Kemper, C. J., Trapp, S., Kathmann, N., Samuel, D. B., & Ziegler, M. (2018). Short versus long scales in clinical assessment: Exploring the trade-off between resources saved and psychometric quality lost using two measures of obsessive–compulsive symptoms. Assessment, 26(5), 767–782. https://doi.org/10.1177/1073191118810057

Article  PubMed  Google Scholar 

Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2001). The PHQ-9. Journal of General Internal Medicine, 16(9), 606–613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kroenke, K., Spitzer, R. L., Williams, J. B. W., Monahan, P. O., & Löwe, B. (2007). Anxiety disorders in primary care: Prevalence, impairment, comorbidity, and detection. Annals of Internal Medicine, 146(5), 317–325. https://doi.org/10.7326/0003-4819-146-5-200703060-00004

Article  PubMed  Google Scholar 

Kruyen, P. M., Emons, W. H. M., & Sijtsma, K. (2013). On the shortcomings of shortened tests: A literature review. International Journal of Testing, 13(3), 223–248. https://doi.org/10.1080/15305058.2012.703734

Article  Google Scholar 

Levis, B., Benedetti, A., Thombs, B.D., DEPRESsion Screening Data (DEPRESSD) Collaboration, Riehm, K.E., Saadat, N., Levis, A.W., Azar, M., Rice, D.B., Chiovitti, M.J., Sanchez, T.A., Boruff, J., Cuijpers, P., Gilbody, S., Ioannidis, J.P.A., Kloda, L.A., McMillan, D., Patten, S.B., Shrier, I., Ziegelstein, R.C., Akena, D.H., Arroll, B., Ayalon, L., Baradaran, H.R., Baron, M., Bombardier, C.H., Butterworth, P., Carter, G., Chagas, M.H., Chan, J.C.N., Clover, K., Conwell, Y., Man-van Ginkel, J.M., Delgadillo, J., Fann, J.R., Fischer, F.H., Fung, D., Gelaye, B., Goodyear-Smith, F., Greeno, C.G., Hall, B.J., Hambridge, J., Harrison, P.A., Härter, M., Hegerl, U., Hides, L., Hobfoll, S.E., Hudson, M., Inagaki, M., Ismail, K., Jetté, N., Khamseh, M.E., Kiely, K.M., Kwan, Y., Liu, S.-I., Lotrakul, M., Loureiro, S.R., Löwe, B., Marsh, L., McGuire, A., Sidik, S.M., Munhoz, T.N., Muramatsu, K., Osório, F.L., Patel, V., Pence, B.W., Persoons, P., Picardi, A., Reuter, K., Rooney, A.G., Santos, I.S., Shaaban, J., Sidebottom, A., Simning, A., Stafford, L., Sung, S.C., Tan, P.L.L., Turner, A., Feltz-Cornelis, C.M., van Weert, H.C., Vöhringer, P.A., White, J., Whooley, M.A., Winkley, K., Yamada, M., Zhang, Y.(2019). Accuracy of patient health questionnaire-9 (phq-9) for screening to detect major depression: individual participant data meta-analysis. BMJ. 10.1136/bmj.l1476

Linzer, D. A., & Lewis, J. B. (2011). poLCA: An R package for polytomous variable latent class analysis. Journal of Statistical Software, 42(10), 1–29.

Google Scholar 

Löwe, B., Kroenke, K., & Gräfe, K. (2005). Detecting and monitoring depression with a two-item questionnaire (phq-2). Journal of Psychosomatic Research, 58(2), 163–171. https://doi.org/10.1016/j.jpsychores.2004.09.006

Article  PubMed  Google Scholar 

Marshall, S., Haywood, K., & Fitzpatrick, R. (2006). Impact of patient-reported outcome measures on routine practice: a structured review. Journal of Evaluation in Clinical Practice, 12(5), 559–568. https://doi.org/10.1111/j.1365-2753.2006.00650.x

Article  PubMed  Google Scholar 

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276.

PubMed  PubMed Central  Google Scholar 

Morris, J., Perez, D., & McNoe, B. (1997). The use of quality of life data in clinical practice. Quality of Life Research, 7(1), 85–91. https://doi.org/10.1023/A:1008893007068

Article  Google Scholar 

Nelson, E. C., Eftimovska, E., Lind, C., Hager, A., Wasson, J. H., & Lindblad, S. (2015). Patient reported outcome measures in practice. BMJ. https://doi.org/10.1136/bmj.g7818

Article  PubMed  PubMed Central  Google Scholar 

Neulinger, B., Ebert, C., Lochbühler, K., Bergmann, A., Gensichen, J., & Lukaschek, K. (2024). Screening tools assessing mental illness in primary care: A systematic review. European Journal of General Practice, 30(1), 2418299. https://doi.org/10.1080/13814788.2024.2418299

Article  PubMed  PubMed Central  Google Scholar 

Psychogyiopoulos, A., Smits, N., & Van der Ark, L.A. (2025). Estimating the joint item-score density using an unrestricted latent class model: advancing flexibility in computerized adaptive testing. Journal of Computerized Adaptive Testing, 12(3), 136–164. https://doi.org/10.7333/2507-1203136

Article  Google Scholar 

R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2022). R Foundation for Statistical Computing. https://www.R-project.org/

Reise, S. P., & Waller, N. G. (2009). Item response theory and clinical measurement. Annual Review of Clinical Psychology, 5, 27–48. https://doi.org/10.1146/annurev.clinpsy.032408.153553

Article  PubMed  Google Scholar 

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136

Article  Google Scholar 

Sijtsma, K., Ellis, J. L., & Borsboom, D. (2024). Recognize the value of the sum score, psychometrics’ greatest accomplishment. Psychometrika, 89(1), 84–117. https://doi.org/10.1007/s11336-024-09964-7

Article  PubMed  PubMed Central  Google Scholar 

Smits, N., Van der Ark, L. A., & Conijn, J. M. (2018). Measurement versus prediction in the construction of patient-reported outcome questionnaires: can we have our cake and eat it? Quality of Life Research, 27(7), 1673–1682. https://doi.org/10.1007/s11136-017-1720-4

Article  PubMed  Google Scholar 

Smits, N., & Finkelman, M. D. (2015). Shortening the PHQ-9: a proof-of-principle study of utilizing Stochastic Curtailment as a method for constructing ultrashort screening instruments. General Hospital Psychiatry, 37(5), 464–469. https://doi.org/10.1016/j.genhosppsych.2015.04.011

Article  PubMed  Google Scholar 

Smits, N., Finkelman, M. D., & Kelderman, H. (2016). Stochastic Curtailment of questionnaires for three-level classification: Shortening the CES-D for assessing low, moderate, and high risk of depression. Applied Psychological Measurement, 40(1), 22–36. https://doi.org/10.1177/0146621615592294

Article  PubMed  Google Scholar 

Spitzer, R. L., Kroenke, K., Williams, J. B. W., & Löwe, B. (2006). A brief measure for assessing generalized anxiety disorder: The GAD-7. Archives of Internal Medicine, 166(10), 1092–1097. https://doi.org/10.1001/archinte.166.10.1092

Article  PubMed  Google Scholar 

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14(4), 323–348.

Comments (0)

No login
gif