Chiari H. Ueber Selbstverdauung des menschlichen Pankreas. Z Für Heilkd. 1896;17:69–96.
Mounzer R, Langmead CJ, Wu BU, et al. Comparison of existing clinical scoring systems to predict persistent organ failure in patients with acute pancreatitis. Gastroenterology. 2012;142:1476–82. quiz e15–16.
Christou CD, Tsoulfas G. Challenges involved in the application of artificial intelligence in gastroenterology: the race is on! World J Gastroenterol. 2023;29:6168–78.
CAS PubMed PubMed Central Google Scholar
Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62:102–11.
Knoph CS, Joseph N, Lucocq J, et al. No definite associations between opioid doses and severity of acute pancreatitis - results from a multicentre international prospective study. Pancreatology. 2025;25:12–9.
de-Madaria E, Buxbaum JL, Maisonneuve P, et al. Aggressive or moderate fluid resuscitation in acute pancreatitis. N Engl J Med. 2022;387:989–1000.
Wu BU, Hwang JQ, Gardner TH, et al. Lactated Ringer’s solution reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clin Gastroenterol Hepatol. 2011;9:710–7.e1.
Guzmán-Calderón E, Diaz-Arocutipa C, Monge E. Lactate Ringer’s versus normal saline in the management of acute pancreatitis: a systematic review and meta-analysis of randomized controlled trials. Dig Dis Sci. 2022;67:4131–9.
Hong J, Li Q, Wang Y, et al. Comparison of fluid resuscitation with lactate Ringer’s versus normal saline in acute pancreatitis: an updated meta-analysis. Dig Dis Sci. 2024;69:262–74.
Guilabert L, Cárdenas-Jaén K, Vaillo-Rocamora A, et al. Normal saline versus lactated Ringer’s solution for acute pancreatitis resuscitation, an open-label multicenter randomized controlled trial: the WATERLAND trial study protocol. Trials. 2024;25:699.
CAS PubMed PubMed Central Google Scholar
Bakker OJ, van Brunschot S, van Santvoort HC, et al. Early versus on-demand nasoenteric tube feeding in acute pancreatitis. N Engl J Med. 2014;371:1983–93.
Moggia E, Koti R, Belgaumkar AP, et al. Pharmacological interventions for acute pancreatitis. Cochrane Database Syst Rev. 2017;4:CD011384.
Tenner S, Vege SS, Sheth SG, et al. American College of Gastroenterology guidelines: management of acute pancreatitis. Am J Gastroenterol. 2024;119:419–37.
Baron TH, DiMaio CJ, Wang AY, Morgan KA. American Gastroenterological Association clinical practice update: management of pancreatic necrosis. Gastroenterology. 2020;158:67–75.e1.
Working Group IAP/APA Acute Pancreatitis Guidelines. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology. 2013;13 4 Suppl 2:e1–15.
Yan LH, Hu XH, Chen RX, et al. Plasmapheresis compared with conventional treatment for hypertriglyceridemia-induced acute pancreatitis: a systematic review and meta-analysis. J Clin Apheresis. 2023;38:4–15.
Piplani S, Jain A, Singh K, et al. Efficacy and adverse effects of insulin versus plasmapheresis in patients with hypertriglyceridemia-3-induced acute pancreatitis: a systematic review and meta-analysis. Ann Gastroenterol. 2024;37:109–16.
Cao L, Chen Y, Liu S, et al. Early plasmapheresis among patients with hypertriglyceridemia–associated acute pancreatitis. JAMA Netw Open. 2023;6:e2320802.
PubMed PubMed Central Google Scholar
Joglekar K, Brannick B, Kadaria D, Sodhi A. Therapeutic plasmapheresis for hypertriglyceridemia-associated acute pancreatitis: case series and review of the literature. Ther Adv Endocrinol Metab. 2017;8:59–65.
PubMed PubMed Central Google Scholar
Saluja A, Saluja M, Villa A, et al. Pancreatic duct obstruction in rabbits causes digestive zymogen and lysosomal enzyme colocalization. J Clin Invest. 1989;84:1260–6.
CAS PubMed PubMed Central Google Scholar
Gukovskaya AS, Gukovsky I. Autophagy and pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2012;303:G993–1003.
CAS PubMed PubMed Central Google Scholar
Biczo G, Vegh ET, Shalbueva N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology. 2018;154:689–703.
Sendler M, Weiss FU, Golchert J, et al. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice. Gastroenterology. 2018;154:704–18.e10.
Dawra R, Sah RP, Dudeja V, et al. Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology. 2011;141:2210–7.e2.
Talukdar R, Sareen A, Zhu H, et al. Release of cathepsin B in cytosol causes cell death in acute pancreatitis. Gastroenterology. 2016;151:747–58.e5.
Lewarchik CM, Orabi AI, Jin S, et al. The ryanodine receptor is expressed in human pancreatic acinar cells and contributes to acinar cell injury. Am J Physiol Gastrointest Liver Physiol. 2014;307:G574–81.
CAS PubMed PubMed Central Google Scholar
Husain SZ, Orabi AI, Muili KA, et al. Ryanodine receptors contribute to bile acid-induced pathological calcium signaling and pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1423–33.
CAS PubMed PubMed Central Google Scholar
Waldron RT, Chen Y, Pham H, et al. The Orai Ca2+ channel inhibitor CM4620 targets both parenchymal and immune cells to reduce inflammation in experimental acute pancreatitis. J Physiol. 2019;597:3085–105.
Jakkampudi A, Jangala R, Reddy R, et al. Acinar injury and early cytokine response in human acute biliary pancreatitis. Sci Rep. 2017;7:15276.
PubMed PubMed Central Google Scholar
Chakraborty RK, Burns B. Systemic inflammatory response syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 March 18]. http://www.ncbi.nlm.nih.gov/books/NBK547669/
Jakkampudi A, Jangala R, Reddy BR, Mitnala S, Nageshwar Reddy D, Talukdar R. NF-κB in acute pancreatitis: mechanisms and therapeutic potential. Pancreatology. 2016;16:477–88.
Jakkampudi A, Jangala R, Reddy R, et al. Fatty acid ethyl ester (FAEE) associated acute pancreatitis: an ex-vivo study using human pancreatic acini. Pancreatology. 2020;20:1620–30.
Niu M, Zhang X, Wu Z, et al. Neutrophil-specific ORAI1 calcium channel inhibition reduces pancreatitis-associated acute lung injury. Funct Oxf Engl. 2024;5:zqad061.
Mole DJ, Olabi B, Robinson V, Garden OJ, Parks RW. Incidence of individual organ dysfunction in fatal acute pancreatitis: analysis of 1024 death records. HPB (Oxford). 2009;11:166–70.
PubMed PubMed Central Google Scholar
Machicado JD, Gougol A, Tan X, et al. Mortality in acute pancreatitis with persistent organ failure is determined by the number, type, and sequence of organ systems affected. United European Gastroenterol J. 2021;9:139–49.
CAS PubMed PubMed Central Google Scholar
Prasada R, Muktesh G, Samanta J, et al. Natural history and profile of selective cytokines in patients of acute pancreatitis with acute kidney injury. Cytokine. 2020;133:155177.
Siddappa PK, Kochhar R, Sarotra P, Medhi B, Jha V, Gupta V. Neutrophil gelatinase-associated lipocalin: an early biomarker for predicting acute kidney injury and severity in patients with acute pancreatitis. JGH Open. 2019;3:105–10.
Siddall E, Khatri M, Radhakrishnan J. Capillary leak syndrome: etiologies, pathophysiology, and management. Kidney Int. 2017;92:37–46.
Garg PK, Mahapatra SJ. Optimum fluid therapy in acute pancreatitis needs an alchemist. Gastroenterology. 2021;160:655–9.
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.
Merza M, Hartman H, Rahman M, et al. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology. 2015;149:1920–31.e8.
Comments (0)