Lu B, Dao PD, Liu J, He Y, Shang J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020;12:2659. https://doi.org/10.3390/rs12162659.
Khan MJ, Khan HS, Yousaf A, Khurshid K, Abbas A. Modern trends in hyperspectral image analysis: a review. IEEE Access. 2018;6:14118–29. https://doi.org/10.1109/access.2018.2812999.
Goetz AFH. Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sens Environ. 2009;113:S5–16. https://doi.org/10.1016/j.rse.2007.12.014.
Lu G, Fei B. Medical hyperspectral imaging: a review. J Biomed Opt. 2014;19:10901. https://doi.org/10.1117/1.JBO.19.1.010901.
Article CAS PubMed Google Scholar
Nasrabadi NM. Hyperspectral target detection : an overview of current and future challenges. IEEE Signal Process Mag. 2014;31:34–44. https://doi.org/10.1109/MSP.2013.2278992.
Sneha Kaul A. Hyperspectral imaging and target detection algorithms: a review. Multimed Tools Appl. 2022;81:44141–206. https://doi.org/10.1007/s11042-022-13235-x.
Felli E, Cinelli L, Bannone E, et al. Hyperspectral imaging in major hepatectomies: preliminary results from the ex-machyna trial. Cancers (Basel). 2022;14:5591. https://doi.org/10.3390/cancers14225591.
Article CAS PubMed Google Scholar
Hennig S, Jansen-Winkeln B, Kohler H, et al. Novel intraoperative imaging of gastric tube perfusion during oncologic esophagectomy-a pilot study comparing hyperspectral imaging (HSI) and fluorescence imaging (FI) with indocyanine green (ICG). Cancers (Basel). 2021;14:97. https://doi.org/10.3390/cancers14010097.
Article CAS PubMed Google Scholar
Son GM, Ahn H-M, Lee IY, Lee SM, Park S-H, Baek K-R. Clinical effect and standardization of indocyanine green angiography in the laparoscopic colorectal surgery. J Minim Invasive Surg. 2021;24:113–22. https://doi.org/10.7602/jmis.2021.24.3.113.
Article PubMed PubMed Central Google Scholar
Tian C, Su W, Huang S, et al. Identification of gastric cancer types based on hyperspectral imaging technology. J Biophotonics. 2023;5:e202300276. https://doi.org/10.1002/jbio.202300276.
Tian C, Hao D, Ma M, et al. Graded diagnosis of Helicobacter pylori infection using hyperspectral images of gastric juice. J Biophotonics. 2023;14:e202300254. https://doi.org/10.1002/jbio.202300254.
Mitsui T, Mori A, Takamatsu T, et al. Evaluating the identification of the extent of gastric cancer by over-1000 nm near-infrared hyperspectral imaging using surgical specimens. J Biomed Opt. 2023;28:086001. https://doi.org/10.1117/1.JBO.28.8.086001.
Article PubMed PubMed Central Google Scholar
Liu S, Wang Q, Zhang G, Du J, Hu B, Zhang Z. Using hyperspectral imaging automatic classification of gastric cancer grading with a shallow residual network. Anal Methods. 2020;12:3844–53. https://doi.org/10.1039/d0ay01023e.
Article CAS PubMed Google Scholar
Liu N, Guo Y, Jiang H, Yi W. Gastric cancer diagnosis using hyperspectral imaging with principal component analysis and spectral angle mapper. J Biomed Opt. 2020;25:1–9. https://doi.org/10.1117/1.JBO.25.6.066005.
Li Y, Xie X, Yang X, et al. Diagnosis of early gastric cancer based on fluorescence hyperspectral imaging technology combined with partial-least-square discriminant analysis and support vector machine. J Biophotonics. 2019;12:e201800324. https://doi.org/10.1002/jbio.201800324.
Li Y, Deng L, Yang X, et al. Early diagnosis of gastric cancer based on deep learning combined with the spectral-spatial classification method. Biomed Opt Express. 2019;10:4999–5014. https://doi.org/10.1364/BOE.10.004999.
Article CAS PubMed PubMed Central Google Scholar
Ogihara H, Hamamoto Y, Fujita Y, Goto A, Nishikawa J, Sakaida I. Development of a gastric cancer diagnostic support system with a pattern recognition method using a hyperspectral camera. J Sensors. 2016;2016:1–6. https://doi.org/10.1155/2016/1803501.
Kiyotoki S, Nishikawa J, Okamoto T, et al. New method for detection of gastric cancer by hyperspectral imaging: a pilot study. J Biomed Opt. 2013;18:26010. https://doi.org/10.1117/1.JBO.18.2.026010.
Article CAS PubMed Google Scholar
Akbari H, Uto K, Kosugi Y, Kojima K, Tanaka N. Cancer detection using infrared hyperspectral imaging. Cancer Sci. 2011;102:852–7. https://doi.org/10.1111/j.1349-7006.2011.01849.x.
Article CAS PubMed PubMed Central Google Scholar
Schwandner F, Hinz S, Witte M, Philipp M, Schafmayer C, Grambow E. Intraoperative assessment of gastric sleeve oxygenation using hyperspectral imaging in esophageal resection: a feasibility study. Visc Med. 2021;37:165–70. https://doi.org/10.1159/000509304.
Moulla Y, Buchloh DC, Kohler H, et al. Hyperspectral imaging (HSI)-a new tool to estimate the perfusion of upper abdominal organs during pancreatoduodenectomy. Cancers (Basel). 2021;13:2846. https://doi.org/10.3390/cancers13112846.
Article CAS PubMed Google Scholar
Collins T, Maktabi M, Barberio M, et al. Automatic recognition of colon and esophagogastric cancer with machine learning and hyperspectral imaging. Diagnostics (Basel). 2021;11:1810. https://doi.org/10.3390/diagnostics11101810.
Sato D, Takamatsu T, Umezawa M, et al. Distinction of surgically resected gastrointestinal stromal tumor by near-infrared hyperspectral imaging. Sci Rep. 2020;10:21852. https://doi.org/10.1038/s41598-020-79021-7.
Article CAS PubMed PubMed Central Google Scholar
Kohler H, Jansen-Winkeln B, Maktabi M, et al. Evaluation of hyperspectral imaging (HSI) for the measurement of ischemic conditioning effects of the gastric conduit during esophagectomy. Surg Endosc. 2019;33:3775–82. https://doi.org/10.1007/s00464-019-06675-4.
Jansen-Winkeln B, Maktabi M, Takoh JP, et al. Hyperspectral imaging of gastrointestinal anastomoses. Chirurg. 2018;89:717–25. https://doi.org/10.1007/s00104-018-0633-2.
Article CAS PubMed Google Scholar
Zimmermann A, Kohler H, Chalopin C, et al. The role of intraoperative hyperspectral imaging (HSI) in colon interposition after esophagectomy. BMC Surg. 2023;23:47. https://doi.org/10.1186/s12893-023-01946-3.
Article PubMed PubMed Central Google Scholar
Tkachenko M, Chalopin C, Jansen-Winkeln B, Neumuth T, Gockel I, Maktabi M. Impact of pre- and post-processing steps for supervised classification of colorectal cancer in hyperspectral images. Cancers (Basel). 2023;15:2157. https://doi.org/10.3390/cancers15072157.
Son GM, Nazir AM, Yun MS, et al. The safe values of quantitative perfusion parameters of ICG angiography based on tissue oxygenation of hyperspectral imaging for laparoscopic colorectal surgery: a prospective observational study. Biomedicines. 2023;11:2029. https://doi.org/10.3390/biomedicines11072029.
Article PubMed PubMed Central Google Scholar
Muniz FB, Baffa MFO, Garcia SB, Bachmann L, Felipe JC. Histopathological diagnosis of colon cancer using micro-FTIR hyperspectral imaging and deep learning. Comput Methods Programs Biomed. 2023;231:107388. https://doi.org/10.1016/j.cmpb.2023.107388.
Wagner T, Radunz S, Becker F, et al. Hyperspectral imaging detects perfusion and oxygenation differences between stapled and hand-sewn intestinal anastomoses. Innov Surg Sci. 2022;7:59–63. https://doi.org/10.1515/iss-2022-0007.
Article PubMed PubMed Central Google Scholar
Jansen-Winkeln B, Dvorak M, Kohler H, et al. Border line definition using hyperspectral imaging in colorectal resections. Cancers (Basel). 2022;14:1188. https://doi.org/10.3390/cancers14051188.
Comments (0)