The influence of stress and social defeat on neurobiological reinforcement mechanisms across reward to withdrawal in nicotine addiction

Adams D, Kaliss N, Missner A, Valentine MM (2021) The interplay of nicotine and social stress mediate dopaminergic neuron firing in the ventral tegmental area-nucleus accumbens pathway, contributing to stress and depressive mood disorders. Georgetown Sci Res J 1(1):70–83

Google Scholar 

Ahmed SH, Badiani A, Miczek KA, Müller CP (2020) Non-pharmacological factors that determine drug use and addiction. Neurosci Biobehav Rev 110:3–27

CAS  PubMed  Google Scholar 

Akbari M, Hasani J, Seydavi M (2020) Negative affect among daily smokers: A systematic review and meta-analysis. J Affect Disord 274:553–567

PubMed  Google Scholar 

Al’Absi M (2006) Hypothalamic–pituitary–adrenocortical responses to psychological stress and risk for smoking relapse. Int J Psychophysiol 59(3):218–227

PubMed  Google Scholar 

Albrechet-Souza L et al (2015) Corticotropin releasing factor binding protein and CRF 2 receptors in the ventral tegmental area: modulation of ethanol binge drinking in C 57 BL/6J mice. Alcohol: Clin Exp Res 39(9):1609–1618

CAS  PubMed  Google Scholar 

Ansell EB, Gu P, Tuit K, Sinha R (2012) Effects of cumulative stress and impulsivity on smoking status. Hum Psychopharmacol Clin Exp 27:200–208

Google Scholar 

Avelar AJ, George O (2022) How nicotine withdrawal symptoms fight each other: interpeduncular GABA neuron activity dynamically controls negative affect vs. coping behavior. Neuropsychopharmacology 47:617–618

CAS  PubMed  Google Scholar 

Baker TE, Zeighami Y, Dagher A, Holroyd CB (2020) Smoking decisions: altered reinforcement learning signals induced by nicotine state. Nicotine Tob Res 22:164–171

PubMed  Google Scholar 

Barrington-Trimis JL et al (2016) The e-cigarette social environment, e-cigarette use, and susceptibility to cigarette smoking. J Adolesc Health 59:75–80

PubMed  PubMed Central  Google Scholar 

Benowitz NL (1988) Drug therapy. Pharmacologic aspects of cigarette smoking and nicotine addiction. N Engl J Med 319:1318–1330

CAS  PubMed  Google Scholar 

Benowitz NL (1996) Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 36:597–613

CAS  PubMed  Google Scholar 

Berlin GS, Hollander E (2014) Compulsivity, impulsivity, and the DSM-5 process. CNS Spectr 19:62–68

PubMed  Google Scholar 

Biała G, Budzyńska B, Kruk M (2005) Naloxone precipitates nicotine abstinence syndrome and attenuates nicotine-induced antinociception in mice. Pharmacol Rep 57:755–760

PubMed  Google Scholar 

Bruijnzeel AW, Markou A (2004) Adaptations in cholinergic transmission in the ventral tegmental area associated with the affective signs of nicotine withdrawal in rats. Neuropharmacology 47:572–579

CAS  PubMed  Google Scholar 

Bruijnzeel AW, Zislis G, Wilson C, Gold MS (2007) Antagonism of CRF receptors prevents the deficit in brain reward function associated with precipitated nicotine withdrawal in rats. Neuropsychopharmacology 32:955–963

CAS  PubMed  Google Scholar 

Bruijnzeel AW, Prado M, Isaac S (2009) Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse. Biol Psychiat 66:110–117

CAS  PubMed  Google Scholar 

Brunzell DH, Stafford AM, Dixon CI (2015) Nicotinic receptor contributions to smoking: insights from human studies and animal models. Curr Addict Rep 2:33–46

PubMed  PubMed Central  Google Scholar 

Burke AR, DeBold JF, Miczek KA (2016) CRF type 1 receptor antagonism in ventral tegmental area of adolescent rats during social defeat: prevention of escalated cocaine self-administration in adulthood and behavioral adaptations during adolescence. Psychopharmacology 233:2727–2736

CAS  PubMed  PubMed Central  Google Scholar 

Butler K, Forget B, Heishman SJ, Le Foll B (2021) Significant association of nicotine reinforcement and cue reactivity: a translational study in humans and rats. Behav Pharmacol 32:212–219

PubMed  PubMed Central  Google Scholar 

Caggiula AR et al (1998) The role of corticosteroids in nicotine’s physiological and behavioral effects. Psychoneuroendocrinology 23:143–159

CAS  PubMed  Google Scholar 

Carrette LLG et al (2023) Hyperconnectivity of two separate long-range cholinergic systems contributes to the reorganization of the brain functional connectivity during nicotine withdrawal in male mice. eNeuro10:ENEURO.0019–23.2023. https://doi.org/10.1101/2023.03.29.534836

Casarrubea M et al (2015) Acute nicotine induces anxiety and disrupts temporal pattern organization of rat exploratory behavior in hole-board: a potential role for the lateral habenula. Front Cell Neurosci 9:197

PubMed  PubMed Central  Google Scholar 

CDCTobaccoFree (2021) Fast facts. Centers for disease control and prevention. https://www.cdc.gov/tobacco/data_statistics/fact_sheets/fast_facts/index.htm. Accessed 15 June 2025

Changeux J-P (2010) Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci 11:389–401

CAS  PubMed  Google Scholar 

Changeux JP et al (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Rev 26(2–3):198–216

CAS  PubMed  Google Scholar 

Chellian R et al (2021) Rodent models for nicotine withdrawal. J Psychopharmacol 35:1169–1187

CAS  PubMed  PubMed Central  Google Scholar 

Clarke PBS, Hommer DW, Pert A, Skirboll LR (1987) Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence. Neuroscience 23:1011–1019

CAS  PubMed  Google Scholar 

Cohen A, George O (2013) Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use, and compulsive smoking. Front Psychiatr 4:41

Google Scholar 

Cohen C, Perrault G, Voltz C, Steinberg R, Soubrié P (2002) SR141716, a central cannabinoid (CB1) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine in rats. Behav Pharmacol 13:451–463

CAS  PubMed  Google Scholar 

Cohen A, Koob GF, George O (2012) Robust escalation of nicotine intake with extended access to nicotine self-administration and intermittent periods of abstinence. Neuropsychopharmacology 37:2153–2160

CAS  PubMed  PubMed Central  Google Scholar 

Cohen A et al (2015) Extended access to nicotine leads to a CRF1 receptor dependent increase in anxiety-like behavior and hyperalgesia in rats. Addict Biol 20:56–68

CAS  PubMed  Google Scholar 

Cohen G, Bellanca CM, Bernardini R, Rose JE, Polosa R (2024) Personalized and adaptive interventions for smoking cessation: Emerging trends and determinants of efficacy. iScience 27:111090

PubMed  PubMed Central  Google Scholar 

Corrigall WA (1992) A rodent model for nicotine self-administration. In: Boulton AA, Baker GB, Wu PH (eds) Animal models of drug addiction. Humana Press, Totowa, NJ, pp. 315–344. https://doi.org/10.1385/0-89603-217-5:315

Cottone P et al (2009) CRF system recruitment mediates dark side of compulsive eating. Proc Natl Acad Sci 106(47):20016–20020. https://doi.org/10.1073/pnas.0908789106

PubMed  PubMed Central  Google Scholar 

Covington HE, Miczek KA (2001) Repeated social-defeat stress, cocaine or morphine. Psychopharmacology 158:388–398

CAS  PubMed  Google Scholar 

Covington HE et al (2005) Brief social defeat stress: long lasting effects on cocaine taking during a binge and Zif268 mRNA expression in the amygdala and prefrontal cortex. Neuropsychopharmacol 30:310–321

CAS  Google Scholar 

Current Cigarette Smoking Among Adults — United States (2005–2012). https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6302a2.htm. Accessed 15 June 2025

Damaj MI, Kao W, Martin BR (2003) Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. J Pharmacol Exp Ther 307:526–534

CAS  PubMed  Google Scholar 

De Fonseca FR, Rubio P, Menzaghi F, Merlo-Pich E, Rivier J, Koob GF, Navarro M (1996) Corticotropin-releasing factor (CRF) antagonist [D-Phe12, Nle 21, 38, C alpha MeLeu37] CRF attenuates the acute actions of the highly potent cannabinoid receptor agonist HU-210 on defensive-withdrawal behavior in rats. J Pharmacol Exp Ther 276(1):56–64

Google Scholar 

de Jong IE, de Kloet ER (2004) Glucocorticoids and vulnerability to psychostimulant drugs: toward substrate and mechanism. Ann N Y Acad Sci 1018(1):192–198

PubMed  Google Scholar 

Diagnostic and Statistical Manual of Mental Disorders (n.d.) DSM library. https://doi.org/10.1176/appi.books.9780890425787

Domingues LP, Antonio BDB, Oliveira MGMD, Quadros IMHD (2019) Consequence of two protocols of social defeat stress on nicotine-induced psychomotor effects in mice. BioMed Res Int 2019(1):5404251

PubMed  PubMed Central  Google Scholar 

Donny EC, Caggiula AR, Knopf S, Brown C (1995) Nicotine self-administration in rats. Psychopharmacology 122:390–394

CAS  PubMed  Google Scholar 

Donny EC et al (1998) Acquisition of nicotine self-administration in rats: the effects of dose, feeding schedule, and drug contingency. Psychopharmacology 136:83–90

CAS  PubMed 

Comments (0)

No login
gif