Continuous kidney replacement therapy with CARPEDIEM of premature and low birth weight neonates from the French registry

Iacobelli S, Guignard J-P (2021) Maturation of glomerular filtration rate in neonates and infants: an overview. Pediatr Nephrol 36:1439–1446. https://doi.org/10.1007/s00467-020-04632-1

Article  PubMed  Google Scholar 

Hughson M, Farris AB, Douglas-Denton R et al (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63:2113–2122. https://doi.org/10.1046/j.1523-1755.2003.00018.x

Article  PubMed  Google Scholar 

Wu Y, Wang H, Pei J et al (2022) Acute kidney injury in premature and low birth weight neonates: a systematic review and meta-analysis. Pediatr Nephrol 37:275–287. https://doi.org/10.1007/s00467-021-05251-0

Article  PubMed  Google Scholar 

Askenazi DJ, Heagerty PJ, Schmicker RH et al (2020) Prevalence of acute kidney injury (AKI) in extremely low gestational age neonates (ELGAN). Pediatr Nephrol 35:1737–1748. https://doi.org/10.1007/s00467-020-04563-x

Article  PubMed  PubMed Central  Google Scholar 

Mirochnick MH, Miceli JJ, Kramer PA et al (1988) Furosemide pharmacokinetics in very low birth weight infants. J Pediatr 112:653–657. https://doi.org/10.1016/s0022-3476(88)80192-6

Article  CAS  PubMed  Google Scholar 

Fayard J, Pradat P, Lorthois S et al (2022) Nephrocalcinosis in very low birth weight infants: incidence, associated factors, and natural course. Pediatr Nephrol 37:3093–3104. https://doi.org/10.1007/s00467-021-05417-w

Article  PubMed  PubMed Central  Google Scholar 

Askenazi D (2011) Evaluation and management of critically Ill children with acute kidney injury. Curr Opin Pediatr 23:201–207. https://doi.org/10.1097/MOP.0b013e328342ff37

Article  PubMed  PubMed Central  Google Scholar 

Noh J, Kim CY, Jung E et al (2020) Challenges of acute peritoneal dialysis in extremely-low-birth-weight infants: a retrospective cohort study. BMC Nephrol 21:437. https://doi.org/10.1186/s12882-020-02092-1

Article  PubMed  PubMed Central  Google Scholar 

Jetton JG, Boohaker LJ, Sethi SK et al (2017) Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health 1:184–194. https://doi.org/10.1016/S2352-4642(17)30069-X

Article  PubMed  PubMed Central  Google Scholar 

Ronco C, Garzotto F, Brendolan A et al (2014) Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet 383:1807–1813. https://doi.org/10.1016/S0140-6736(14)60799-6

Article  PubMed  Google Scholar 

Ronco C, Garzotto F, Ricci Z (2012) CA.R.PE.DI.E.M. (Cardio-Renal Pediatric Dialysis Emergency Machine): evolution of continuous renal replacement therapies in infants A personal journey. Pediatr Nephrol 27:1203–1211. https://doi.org/10.1007/s00467-012-2179-8

Article  PubMed  Google Scholar 

Riley DS, Barber MS, Kienle GS et al (2017) CARE guidelines for case reports: explanation and elaboration document. J Clin Epidemiol 89:218–235. https://doi.org/10.1016/j.jclinepi.2017.04.026

Article  PubMed  Google Scholar 

Brion LP, Fleischman AR, McCarton C, Schwartz GJ (1986) A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J Pediatr 109:698–707. https://doi.org/10.1016/s0022-3476(86)80245-1

Article  CAS  PubMed  Google Scholar 

Muhari-Stark E, Burckart GJ (2018) Glomerular filtration rate estimation formulas for pediatric and neonatal use. J Pediatr Pharmacol Ther 23:424–431. https://doi.org/10.5863/1551-6776-23.6.424

Article  PubMed  PubMed Central  Google Scholar 

Selewski DT, Charlton JR, Jetton JG et al (2015) Neonatal acute kidney injury. Pediatrics 136:e463-473. https://doi.org/10.1542/peds.2014-3819

Article  PubMed  Google Scholar 

Lazarovits G, Ofek Shlomai N, Kheir R et al (2023) Acute kidney injury in very low birth weight infants: a major morbidity and mortality risk factor. Children (Basel) 10:242. https://doi.org/10.3390/children10020242

Article  PubMed  Google Scholar 

Selewski DT, Cornell TT, Lombel RM et al (2011) Weight-based determination of fluid overload status and mortality in pediatric intensive care unit patients requiring continuous renal replacement therapy. Intensive Care Med 37:1166–1173. https://doi.org/10.1007/s00134-011-2231-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sethi SK, Raina R, Rana A et al (2022) Validation of the STARZ neonatal acute kidney injury risk stratification score. Pediatr Nephrol 37:1923–1932. https://doi.org/10.1007/s00467-021-05369-1

Article  PubMed  Google Scholar 

Mamelle N, Munoz F, Grandjean H (1996) Fetal growth from the AUDIPOG study. I. Establishment of reference curves. J Gynecol Obstet Biol Reprod (Paris) 25:61–70

CAS  PubMed  Google Scholar 

Battista J, De Luca D, Eleni Dit Trolli S et al (2023) CARPEDIEM® for continuous kidney replacement therapy in neonates and small infants: a French multicenter retrospective study. Pediatr Nephrol 38:2827–2837. https://doi.org/10.1007/s00467-022-05871-0

Article  PubMed  Google Scholar 

Alobaidi R, Morgan C, Basu RK et al (2018) Association between fluid balance and outcomes in critically Ill children: a systematic review and meta-analysis. JAMA Pediatr 172:257–268. https://doi.org/10.1001/jamapediatrics.2017.4540

Article  PubMed  PubMed Central  Google Scholar 

Starr MC, Griffin R, Gist KM et al (2022) Association of fluid balance with short- and long-term respiratory outcomes in extremely premature neonates: a secondary analysis of a randomized clinical trial. JAMA Netw Open 5:e2248826. https://doi.org/10.1001/jamanetworkopen.2022.48826

Article  PubMed  PubMed Central  Google Scholar 

Selewski DT, Gist KM, Nathan AT et al (2020) The impact of fluid balance on outcomes in premature neonates: a report from the AWAKEN study group. Pediatr Res 87:550–557. https://doi.org/10.1038/s41390-019-0579-1

Article  CAS  PubMed  Google Scholar 

Bansal J, Hayes W (2020) When do children need kidney replacement therapy? Paediatr Child Health (Oxford) 30:313–318. https://doi.org/10.1016/j.paed.2020.06.006

Article  PubMed  Google Scholar 

Garzotto F, Vidal E, Ricci Z et al (2020) Continuous kidney replacement therapy in critically ill neonates and infants: a retrospective analysis of clinical results with a dedicated device. Pediatr Nephrol 35:1699–1705. https://doi.org/10.1007/s00467-020-04562-y

Article  PubMed  Google Scholar 

Borzych-Dużałka D, Shroff R, Ranchin B et al (2024) Prospective study of modifiable risk factors of arterial hypertension and left ventricular hypertrophy in pediatric patients on hemodialysis. Kidney Int Rep 9:1694–1704. https://doi.org/10.1016/j.ekir.2024.03.016

Article  PubMed  PubMed Central  Google Scholar 

Regiroli G, Loi B, Pezza L et al (2023) Continuous venovenous hemofiltration performed by neonatologists with cardio-renal pediatric dialysis emergency machine to treat fluid overload during multiple organ dysfunction syndrome: a case series. Pediatr Crit Care Med 24:e196–e201. https://doi.org/10.1097/PCC.0000000000003177

Article  PubMed  Google Scholar 

Santiago MJ, López-Herce J, Urbano J et al (2009) Complications of continuous renal replacement therapy in critically ill children: a prospective observational evaluation study. Crit Care 13:R184. https://doi.org/10.1186/cc8172

Article  PubMed  PubMed Central  Google Scholar 

Ballabh P (2010) Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res 67:1–8. https://doi.org/10.1203/PDR.0b013e3181c1b176

Article  PubMed  PubMed Central  Google Scholar 

Garzotto F, Zaccaria M, Vidal E et al (2019) Choice of catheter size for infants in continuous renal replacement therapy: bigger is not always better. Pediatr Crit Care Med 20:e170–e179.

Comments (0)

No login
gif