Reduced 5-HT receptor responsiveness in rats after chronic midazolam treatment: behavioral and neurochemical evidence in rats

Conway J, Rolley J, Sutherland JR. Midazolam for sedation before procedures. Cochrane Database Syst Rev. 2016;5:CD9491. https://doi.org/10.1002/14651858.CD009491.pub2.

Article  Google Scholar 

Gencer M, Sezen O. A study comparing the effect of premedication with intravenous midazolam or dexmedetomidine on ketamine-fentanyl sedoanalgesia in burn patients: a randomized clinical trial. Burns. 2020;47:101–9. https://doi.org/10.1016/j.burns.2020.05.016.

Article  PubMed  Google Scholar 

Lethin M, Paluska MR, Petersen TR, et al. Midazolam for anesthetic Premedication in children: considerations and alternatives. Cureus. 2023;15:e50309. https://doi.org/10.7759/cureus.50309.

Article  PubMed  PubMed Central  Google Scholar 

Riva A, Iapadre G, Grasso EA, et al. Intramuscular Midazolam for treatment of status Epilepticus. Expert Opin Pharmacother. 2021;22:37–44. https://doi.org/10.1080/14656566.2020.1812578.

Article  CAS  PubMed  Google Scholar 

Corôa MCP, Mendes PFS, Baia-da-Silva DC, et al. What is known about Midazolam? A Bibliometric approach of the literature. Healthc. 2022;11:96. https://doi.org/10.3390/healthcare11010096.

Article  Google Scholar 

Murphy HM, Kalinina AI, Wideman CH. Effects of chronic oral administration of Midazolam on memory and circadian rhythms in rats. Drug Res. 2023;73:40–5. https://doi.org/10.1055/a-1970-3990.

Article  CAS  Google Scholar 

Tan KR, Brown M, Labouebe G, et al. Neural bases for addictive properties of benzodiazepines. Nature. 2010;463:769–74. https://doi.org/10.1038/nature08758.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jovita-Farias C, Follett ME, Dias-Junior BC, et al. Individual differences in the effects of midazolam on anxiety-like behavior, learning, reward, and choice behavior in male mice. Front Psychiatry. 2023;14:1122568. https://doi.org/10.3389/fpsyt.2023.1122568.

Article  PubMed  PubMed Central  Google Scholar 

Ramazani Y, Nemati A, Moshiri M, et al. Treatment of high dose of intravenous midazolam abuse: a case report. Int Clin Psychopharmacol. 2023;38:123–7. https://doi.org/10.1097/YIC.0000000000000486.

Article  Google Scholar 

Nawaz A, Nielsen S, Mehmood T, et al. Prescription drug dependence with and without concurrent illicit drug use: a multicenter cross-sectional survey among an addiction treatment seeking population. Front Psychiatry. 2023;14:1133606. https://doi.org/10.3389/fpsyt.2023.1133606.

Article  PubMed  PubMed Central  Google Scholar 

Licata SC, Rowlett JK. Abuse and dependence liability of Benzodiazepine-type drugs: GABAA receptor modulation and beyond. Pharmacol Biochem Behav. 2008;90:74–89. https://doi.org/10.1016/j.pbb.2008.01.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yorgason JT, Wadsworth HA, Anderson EJ, et al. Modulation of dopamine release by ethanol is mediated by atypical GABAA receptors on cholinergic interneurons in the nucleus accumbens. Addict Biol. 2022;27:e13108. https://doi.org/10.1111/adb.13108.

Article  CAS  PubMed  Google Scholar 

Ferdinand JM, Peters KZ, Yavas E, et al. Modulation of stimulated dopamine release in rat nucleus accumbens shell by GABA in vitro: Effect of sub-chronic phencyclidine pretreatment. J neurosci Res. 2021;99:1885–901. https://doi.org/10.1002/jnr.24844.

Article  CAS  PubMed  Google Scholar 

Pitman KA, Puil E, Borgland SL. GABAB modulation of dopamine release in the nucleus accumbens core. Eur J Neurosci. 2014;40:3472–80. https://doi.org/10.1111/ejn.12723.

Article  PubMed  Google Scholar 

Saitow F, Nagano M, Suzuki H. Developmental changes in Serotonergic modulation of GABAergic synaptic transmission and Postsynaptic GABAA receptor composition in the cerebellar nuclei. Cerebellum. 2018;17:346–58. https://doi.org/10.1007/s12311-017-0908-z.

Article  CAS  PubMed  Google Scholar 

Feng J, Cai X, Zhao J, et al. Serotonin receptors modulate GABAA receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons. J Neurosci. 2001;21:6502–11. https://doi.org/10.1523/JNEUROSCI.21-17-06502.2001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyanishi H, Suga S, Sumi K, et al. The role of GABA in the dorsal Striatum-Raphe nucleus circuit regulating stress vulnerability in Male mice with high levels of Shati/Nat8l. eNeuro. 2023;10:162. https://doi.org/10.1523/ENEURO.0162-23.2023.

Article  Google Scholar 

Tao R, Auerbach SB. Regulation of serotonin release by GABA and excitatory amino acids. J Psychopharmacol. 2000;14:100–13. https://doi.org/10.1177/026988110001400203.

Article  CAS  PubMed  Google Scholar 

Ross K. Psychobiotics: are they the future intervention for managing depression and anxiety? A literature review. Explore. 2023;19:669–80. https://doi.org/10.1016/j.explore.2023.02.001.

Article  PubMed  Google Scholar 

Sinha R. Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci. 2008;1141:105–30. https://doi.org/10.1196/annals.1441.030.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73. https://doi.org/10.1016/S2215-0366(16)00104-8.

Article  PubMed  PubMed Central  Google Scholar 

Popescu Marian M, Drăgoi AM, et al. Understanding the genetics and neurobiological pathways behind addiction (review). Exp Ther Med. 2021;21:544. https://doi.org/10.3892/etm.2021.9979.

Article  CAS  Google Scholar 

Jiao Y, Liu X, Li J, et al. The role of the GABA system in amphetamine-type stimulant use disorders. Front Cell Neurosci. 2015;9:162. https://doi.org/10.3389/fncel.2015.00162.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bubar MJ, Cunningham KA. Serotonin 5-HT2A and 5-HT2C receptors as potential targets for modulation of psychostimulant use and dependence. Curr Top Med Chem. 2006;6:1971–85. https://doi.org/10.2174/156802606778522131.

Article  CAS  PubMed  Google Scholar 

Schippers F, Pesic M, Saunders R, et al. Randomized crossover trial to compare abuse liability of intravenous Remimazolam versus intravenous Midazolam and placebo in recreational central nervous system depressant users. J Clin Pharmacol. 2020;60:1189–97. https://doi.org/10.1002/jcph.1614.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang G, Wu X, Zhang YM, et al. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice. Neuropharmacology. 2016;101:246–54. https://doi.org/10.1016/j.neuropharm.2015.09.029.

Article  CAS  PubMed  Google Scholar 

Ikram H, Tasneem S, Perveen S, et al. Neurochemical and behavioral effects of Midazolam: a dose related study. Pak J Pharm Sci. 2020;33:85–93.

CAS  PubMed  Google Scholar 

Ikram H, Tasneem S, Perveen S, et al. Neurochemical and behavioral effects of fluoxetine on midazolam induce dependence in an animal model of addiction. Pak J Pharm Sci. 2021;34:1749–57.

CAS  PubMed  Google Scholar 

Ikram H, Atique I, Perveen S, et al. Neurochemical and behavioral effects of lorazepam: a dose related study. Pak J Pharm Sci. 2021;34:85–93.

Google Scholar 

Ikram H, Haleem DJ. Haloperidol-induced Tardive Dyskinesia: role of 5HT2C receptors. Pak J Sci Indus Res. 2010;53:136–45.

CAS  Google Scholar 

Ikram H, Choudhary AM, Haleem DJ. Regional Neurochemical profile following development of Apomorphine-induced reinforcement. Pak J Pharm Sci. 2012;25:513–9.

CAS  PubMed 

Comments (0)

No login
gif