Conway J, Rolley J, Sutherland JR. Midazolam for sedation before procedures. Cochrane Database Syst Rev. 2016;5:CD9491. https://doi.org/10.1002/14651858.CD009491.pub2.
Gencer M, Sezen O. A study comparing the effect of premedication with intravenous midazolam or dexmedetomidine on ketamine-fentanyl sedoanalgesia in burn patients: a randomized clinical trial. Burns. 2020;47:101–9. https://doi.org/10.1016/j.burns.2020.05.016.
Lethin M, Paluska MR, Petersen TR, et al. Midazolam for anesthetic Premedication in children: considerations and alternatives. Cureus. 2023;15:e50309. https://doi.org/10.7759/cureus.50309.
Article PubMed PubMed Central Google Scholar
Riva A, Iapadre G, Grasso EA, et al. Intramuscular Midazolam for treatment of status Epilepticus. Expert Opin Pharmacother. 2021;22:37–44. https://doi.org/10.1080/14656566.2020.1812578.
Article CAS PubMed Google Scholar
Corôa MCP, Mendes PFS, Baia-da-Silva DC, et al. What is known about Midazolam? A Bibliometric approach of the literature. Healthc. 2022;11:96. https://doi.org/10.3390/healthcare11010096.
Murphy HM, Kalinina AI, Wideman CH. Effects of chronic oral administration of Midazolam on memory and circadian rhythms in rats. Drug Res. 2023;73:40–5. https://doi.org/10.1055/a-1970-3990.
Tan KR, Brown M, Labouebe G, et al. Neural bases for addictive properties of benzodiazepines. Nature. 2010;463:769–74. https://doi.org/10.1038/nature08758.
Article CAS PubMed PubMed Central Google Scholar
Jovita-Farias C, Follett ME, Dias-Junior BC, et al. Individual differences in the effects of midazolam on anxiety-like behavior, learning, reward, and choice behavior in male mice. Front Psychiatry. 2023;14:1122568. https://doi.org/10.3389/fpsyt.2023.1122568.
Article PubMed PubMed Central Google Scholar
Ramazani Y, Nemati A, Moshiri M, et al. Treatment of high dose of intravenous midazolam abuse: a case report. Int Clin Psychopharmacol. 2023;38:123–7. https://doi.org/10.1097/YIC.0000000000000486.
Nawaz A, Nielsen S, Mehmood T, et al. Prescription drug dependence with and without concurrent illicit drug use: a multicenter cross-sectional survey among an addiction treatment seeking population. Front Psychiatry. 2023;14:1133606. https://doi.org/10.3389/fpsyt.2023.1133606.
Article PubMed PubMed Central Google Scholar
Licata SC, Rowlett JK. Abuse and dependence liability of Benzodiazepine-type drugs: GABAA receptor modulation and beyond. Pharmacol Biochem Behav. 2008;90:74–89. https://doi.org/10.1016/j.pbb.2008.01.001.
Article CAS PubMed PubMed Central Google Scholar
Yorgason JT, Wadsworth HA, Anderson EJ, et al. Modulation of dopamine release by ethanol is mediated by atypical GABAA receptors on cholinergic interneurons in the nucleus accumbens. Addict Biol. 2022;27:e13108. https://doi.org/10.1111/adb.13108.
Article CAS PubMed Google Scholar
Ferdinand JM, Peters KZ, Yavas E, et al. Modulation of stimulated dopamine release in rat nucleus accumbens shell by GABA in vitro: Effect of sub-chronic phencyclidine pretreatment. J neurosci Res. 2021;99:1885–901. https://doi.org/10.1002/jnr.24844.
Article CAS PubMed Google Scholar
Pitman KA, Puil E, Borgland SL. GABAB modulation of dopamine release in the nucleus accumbens core. Eur J Neurosci. 2014;40:3472–80. https://doi.org/10.1111/ejn.12723.
Saitow F, Nagano M, Suzuki H. Developmental changes in Serotonergic modulation of GABAergic synaptic transmission and Postsynaptic GABAA receptor composition in the cerebellar nuclei. Cerebellum. 2018;17:346–58. https://doi.org/10.1007/s12311-017-0908-z.
Article CAS PubMed Google Scholar
Feng J, Cai X, Zhao J, et al. Serotonin receptors modulate GABAA receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons. J Neurosci. 2001;21:6502–11. https://doi.org/10.1523/JNEUROSCI.21-17-06502.2001.
Article CAS PubMed PubMed Central Google Scholar
Miyanishi H, Suga S, Sumi K, et al. The role of GABA in the dorsal Striatum-Raphe nucleus circuit regulating stress vulnerability in Male mice with high levels of Shati/Nat8l. eNeuro. 2023;10:162. https://doi.org/10.1523/ENEURO.0162-23.2023.
Tao R, Auerbach SB. Regulation of serotonin release by GABA and excitatory amino acids. J Psychopharmacol. 2000;14:100–13. https://doi.org/10.1177/026988110001400203.
Article CAS PubMed Google Scholar
Ross K. Psychobiotics: are they the future intervention for managing depression and anxiety? A literature review. Explore. 2023;19:669–80. https://doi.org/10.1016/j.explore.2023.02.001.
Sinha R. Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci. 2008;1141:105–30. https://doi.org/10.1196/annals.1441.030.
Article CAS PubMed PubMed Central Google Scholar
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73. https://doi.org/10.1016/S2215-0366(16)00104-8.
Article PubMed PubMed Central Google Scholar
Popescu Marian M, Drăgoi AM, et al. Understanding the genetics and neurobiological pathways behind addiction (review). Exp Ther Med. 2021;21:544. https://doi.org/10.3892/etm.2021.9979.
Jiao Y, Liu X, Li J, et al. The role of the GABA system in amphetamine-type stimulant use disorders. Front Cell Neurosci. 2015;9:162. https://doi.org/10.3389/fncel.2015.00162.
Article CAS PubMed PubMed Central Google Scholar
Bubar MJ, Cunningham KA. Serotonin 5-HT2A and 5-HT2C receptors as potential targets for modulation of psychostimulant use and dependence. Curr Top Med Chem. 2006;6:1971–85. https://doi.org/10.2174/156802606778522131.
Article CAS PubMed Google Scholar
Schippers F, Pesic M, Saunders R, et al. Randomized crossover trial to compare abuse liability of intravenous Remimazolam versus intravenous Midazolam and placebo in recreational central nervous system depressant users. J Clin Pharmacol. 2020;60:1189–97. https://doi.org/10.1002/jcph.1614.
Article CAS PubMed PubMed Central Google Scholar
Zhang G, Wu X, Zhang YM, et al. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice. Neuropharmacology. 2016;101:246–54. https://doi.org/10.1016/j.neuropharm.2015.09.029.
Article CAS PubMed Google Scholar
Ikram H, Tasneem S, Perveen S, et al. Neurochemical and behavioral effects of Midazolam: a dose related study. Pak J Pharm Sci. 2020;33:85–93.
Ikram H, Tasneem S, Perveen S, et al. Neurochemical and behavioral effects of fluoxetine on midazolam induce dependence in an animal model of addiction. Pak J Pharm Sci. 2021;34:1749–57.
Ikram H, Atique I, Perveen S, et al. Neurochemical and behavioral effects of lorazepam: a dose related study. Pak J Pharm Sci. 2021;34:85–93.
Ikram H, Haleem DJ. Haloperidol-induced Tardive Dyskinesia: role of 5HT2C receptors. Pak J Sci Indus Res. 2010;53:136–45.
Ikram H, Choudhary AM, Haleem DJ. Regional Neurochemical profile following development of Apomorphine-induced reinforcement. Pak J Pharm Sci. 2012;25:513–9.
Comments (0)