Aliaga-Samanez A, Cobos-Mayo M, Real R et al (2021) Worldwide dynamic biogeography of zoonotic and anthroponotic dengue. PLoS Negl Trop Dis 15:e0009496. https://doi.org/10.1371/journal.pntd.0009496
Article PubMed PubMed Central Google Scholar
Alievi K, Capoani GT, Buzatto M, et al. (2021) Ateleia glazioveana and Ocimum basilicum: plants with potential larvicidal and repellent against Aedes aegypti (Diptera, Culicidae). RSD 10:e228101724733. https://doi.org/10.33448/rsd-v10i17.24733
Barbosa P, Peters TM, Greenough NC (1972) Overcrowding of mosquito populations: responses of larval Aedes aegypti to stress. Environ Entomol 1:89–93. https://doi.org/10.1093/ee/1.1.89
Bermudi PMM, Kowalski F, Menzato MM, et al. (2017) Criadouro de Aedes aegypti em reservatório subterrâneo de água da chuva: um alerta. Rev saúde pública 51:122. https://doi.org/10.11606/S1518-8787.2017051000087
Birck TP, Stefanello R, Lima CDS, Lima MDFRC (2021) Contribuição ao estudo alelopático de Ateleia glazioveana Baill na germinação de picão-preto e soja. In: Pesquisas Agrárias e Ambientais, 1st edn. Pantanal Editora, pp 28–36
Brady OJ, Hay SI (2020) The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu Rev Entomol 65:191–208. https://doi.org/10.1146/annurev-ento-011019-024918
Article CAS PubMed Google Scholar
Byttebier B, Loetti V, De Majo MS et al (2024) Temporal dynamics of the egg bank of Aedes aegypti (Diptera: Culicidae) in the winter-spring transition in a temperate region. Acta Trop 255:107227. https://doi.org/10.1016/j.actatropica.2024.107227
Cansian RL, Staudt A, Bernardi JL et al (2023) Toxicity and larvicidal activity on Aedes aegypti of citronella essential oil submitted to enzymatic esterification. Braz J Biol 83:e244647. https://doi.org/10.1590/1519-6984.244647
Castillo-Morales RM, Carreño Otero AL, Mendez-Sanchez SC et al (2019) Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae. Comp Biochem Physiol c: Toxicol Pharmacol 221:29–37. https://doi.org/10.1016/j.cbpc.2019.03.006
Article CAS PubMed Google Scholar
Chitolina RF, Anjos FA, Lima TS et al (2016) Raw sewage as breeding site to Aedes (Stegomyia) aegypti (Diptera, culicidae). Acta Trop 164:290–296. https://doi.org/10.1016/j.actatropica.2016.07.013
Article CAS PubMed Google Scholar
Couret J, Dotson E, Benedict MQ (2014) Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE 9:e87468. https://doi.org/10.1371/journal.pone.0087468
Article CAS PubMed PubMed Central Google Scholar
Cozzer GD, de Brito R, Pazini ACN et al (2024) Competition is the main factor, compared to non-lethal threat of predation, affecting life-history traits of Aedes aegypti (Diptera, Culicidae) mosquitoes. Pest Manag Science 81:744–754. https://doi.org/10.1002/ps.8477
Cozzer GD, Rezende RDS, Lara TS et al (2023) Predation risk effects on larval development and adult life of Aedes aegypti mosquito. Bull Entomol Res 113:29–36. https://doi.org/10.1017/S000748532200027X
Article CAS PubMed Google Scholar
Crawley MJ (2007) The R book. J. Wiley, Chichester (GB)
Erharuyi O, Imieje VO, Oseghale IO et al (2017) Identification of compounds and insecticidal activity of the root of pride of Barbados (Caesalpinia pulcherrima L). J Appl Sci Environ Manag 21:281. https://doi.org/10.4314/jasem.v21i2.8
Gade S, Rajamanikyam M, Vadlapudi V, et al. (2017) Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochimica et Biophysica Acta (BBA) - General Subjects 1861:541–550. https://doi.org/10.1016/j.bbagen.2016.11.044
Garcez WS, Garcez FR, Silva LMGE, Sarmento UC (2013) Naturally occurring plant compounds with larvicidal activity against Aedes aegypti. Revista Virtual de Química 5:. https://doi.org/10.5935/1984-6835.20130034
Giejdasz K, Fliszkiewicz M, Wasielewski O (2021) Methoprene, a juvenile hormone analogue, modifies maturation and emergence in overwintering Osmia rufa L. adults. Apidologie 52:1387–1398. https://doi.org/10.1007/s13592-021-00908-z
Guzman MG, Gubler DJ, Izquierdo A et al (2016) Dengue Infection Nat Rev Dis Primers 2:16055. https://doi.org/10.1038/nrdp.2016.55
Helvecio E, Romão TP, De Carvalho-Leandro D et al (2020) Polymorphisms in GSTE2 is associated with temephos resistance in Aedes aegypti. Pestic Biochem Physiol 165:104464. https://doi.org/10.1016/j.pestbp.2019.10.002
Article CAS PubMed Google Scholar
Huxley PJ, Murray KA, Pawar S, Cator LJ (2022) Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti. Commun Biol 5:66. https://doi.org/10.1038/s42003-022-03030-7
Article PubMed PubMed Central Google Scholar
Jain C, Khatana S, Vijayvergia R (2019) Bioactivity of secondary metabolites of various plants: a review. IJPSR 10:. https://doi.org/10.13040/IJPSR.0975-8232.10(2).494-04
Karl I, Fischer K (2008) Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia 155:215–225. https://doi.org/10.1007/s00442-007-0902-0
Khursheed A, Rather MA, Jain V et al (2022) Plant based natural products as potential ecofriendly and safer biopesticides: a comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb Pathog 173:105854. https://doi.org/10.1016/j.micpath.2022.105854
Article CAS PubMed Google Scholar
Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evolutionary Ecology Research, 251–268
Kramer IM, Kreß A, Klingelhöfer D et al (2020) Does winter cold really limit the dengue vector Aedes aegypti in Europe? Parasites Vectors 13:178. https://doi.org/10.1186/s13071-020-04054-w
Article PubMed PubMed Central Google Scholar
Kramer IM, Pfeiffer M, Steffens O et al (2021) The ecophysiological plasticity of Aedes aegypti and Aedes albopictus concerning overwintering in cooler ecoregions is driven by local climate and acclimation capacity. Sci Total Environ 778:146128. https://doi.org/10.1016/j.scitotenv.2021.146128
Article CAS PubMed Google Scholar
Kularatne SA, Dalugama C (2022) Dengue infection: global importance, immunopathology and management. Clin Med 22:9–13. https://doi.org/10.7861/clinmed.2021-0791
Maccagnan JC, Monteiro M, Simomura VL, et al. (2023) Efeito larvicida e repelente do extrato aquoso de Uncaria tomentosa frente ao Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). PRW 5:209–224. https://doi.org/10.53660/753.prw1903
Mączka W, Duda-Madej A, Górny A et al (2021) Can eucalyptol replace antibiotics? Molecules 26:4933. https://doi.org/10.3390/molecules26164933
Article CAS PubMed PubMed Central Google Scholar
Marques A, C. Kaplan MA (2014) Active metabolites of the genus Piper against Aedes aegypti: natural alternative sources for dengue vector control. Univ Sci 20:61. https://doi.org/10.11144/Javeriana.SC20-1.amgp
Marsaro IB, Cozzer GD, Cararo ER, et al. (2023) Less is more: partial larvicidal efficacy of plant leachate leads to larger Aedes aegypti mosquitoes. Bull Entomol Res 1–9. https://doi.org/10.1017/S0007485323000366
Melo SJ, Sousa JPB, Sá MG et al (2021) Machaerium acutifolium compounds with larvicidal activity against Aedes aegypti. Pest Manag Sci 77:1444–1451. https://doi.org/10.1002/ps.6163
Article CAS PubMed Google Scholar
Nasir S, Jabeen F, Abbas S, et al. (2017) Effect of climatic conditions and water bodies on population dynamics of the dengue vector, Aedes aegypti (Diptera: Culicidae). Arthropod Borne Dis 11(1):50–59. PMID: 29026852; PMCID: PMC5629306
Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
Article CAS PubMed Google Scholar
Nik Abdull Halim NMH, Che Dom N, Dapari R et al (2022) A systematic review and meta-analysis of the effects of temperature on the development and survival of the Aedes mosquito. Front Public Health 10:1074028. https://doi.org/10.3389/fpubh.2022.1074028
Article PubMed PubMed Central Google Scholar
Ochoa-Martinez C, Tapia-Santos B, Kobylinski KC et al (2012) The dengue virus mosquito vector Aedes aegypti at high elevation in México. Am J Trop Med Hyg 87:902–909. https://doi.org/10.4269/ajtmh.2012.12-0244
Article PubMed PubMed Central Google Scholar
PAHO (2019) Evaluation of innovative strategies for Aedes aegypti control: challenges for their introduction and impact assessment. IRIS Institutional Repository for Information Sharing. https://iris.paho.org/handle/10665.2/51375. Accessed 14 June 2024
Parsons JT, Surgeoner GA (1991) Effect of exposure time on the acute toxicities of permethrin, fenitrothion, carbaryl and carbofuran to mosquito larvae. Enviro Toxic and Chemistry 10:1219–1227. https://doi.org/10.1002/etc.5620100913
Paul P, Muralidharan K, Veeramuthu D (2025) Bioactive principle from Pentanema indicum against Aedes aegypti and Culex quinquefasciatus. Journal of Natural Pesticide Research 12:. https://doi.org/10.1016/j.napere.2025.100125.
Pinheiro Fernandes VM, Ferreira Da Silva Rocha AR, Sousa Da Silva VE, et al. (2024) Termoestabilidade de extratos Foliares de Croton L. (Euphorbiaceae) para o controle de Aedes aegypti. PRW 6:180–198. https://doi.org/10.53660/PRW-2129-3918
Comments (0)