Interactive Effects of Temperature and Baill (Fabaceae) Toxicity on (Diptera: Culicidae) Mosquito Life-History Traits

Aliaga-Samanez A, Cobos-Mayo M, Real R et al (2021) Worldwide dynamic biogeography of zoonotic and anthroponotic dengue. PLoS Negl Trop Dis 15:e0009496. https://doi.org/10.1371/journal.pntd.0009496

Article  PubMed  PubMed Central  Google Scholar 

Alievi K, Capoani GT, Buzatto M, et al. (2021) Ateleia glazioveana and Ocimum basilicum: plants with potential larvicidal and repellent against Aedes aegypti (Diptera, Culicidae). RSD 10:e228101724733. https://doi.org/10.33448/rsd-v10i17.24733

Barbosa P, Peters TM, Greenough NC (1972) Overcrowding of mosquito populations: responses of larval Aedes aegypti to stress. Environ Entomol 1:89–93. https://doi.org/10.1093/ee/1.1.89

Article  Google Scholar 

Bermudi PMM, Kowalski F, Menzato MM, et al. (2017) Criadouro de Aedes aegypti em reservatório subterrâneo de água da chuva: um alerta. Rev saúde pública 51:122. https://doi.org/10.11606/S1518-8787.2017051000087

Birck TP, Stefanello R, Lima CDS, Lima MDFRC (2021) Contribuição ao estudo alelopático de Ateleia glazioveana Baill na germinação de picão-preto e soja. In: Pesquisas Agrárias e Ambientais, 1st edn. Pantanal Editora, pp 28–36

Brady OJ, Hay SI (2020) The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu Rev Entomol 65:191–208. https://doi.org/10.1146/annurev-ento-011019-024918

Article  CAS  PubMed  Google Scholar 

Byttebier B, Loetti V, De Majo MS et al (2024) Temporal dynamics of the egg bank of Aedes aegypti (Diptera: Culicidae) in the winter-spring transition in a temperate region. Acta Trop 255:107227. https://doi.org/10.1016/j.actatropica.2024.107227

Article  PubMed  Google Scholar 

Cansian RL, Staudt A, Bernardi JL et al (2023) Toxicity and larvicidal activity on Aedes aegypti of citronella essential oil submitted to enzymatic esterification. Braz J Biol 83:e244647. https://doi.org/10.1590/1519-6984.244647

Article  Google Scholar 

Castillo-Morales RM, Carreño Otero AL, Mendez-Sanchez SC et al (2019) Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae. Comp Biochem Physiol c: Toxicol Pharmacol 221:29–37. https://doi.org/10.1016/j.cbpc.2019.03.006

Article  CAS  PubMed  Google Scholar 

Chitolina RF, Anjos FA, Lima TS et al (2016) Raw sewage as breeding site to Aedes (Stegomyia) aegypti (Diptera, culicidae). Acta Trop 164:290–296. https://doi.org/10.1016/j.actatropica.2016.07.013

Article  CAS  PubMed  Google Scholar 

Couret J, Dotson E, Benedict MQ (2014) Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE 9:e87468. https://doi.org/10.1371/journal.pone.0087468

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cozzer GD, de Brito R, Pazini ACN et al (2024) Competition is the main factor, compared to non-lethal threat of predation, affecting life-history traits of Aedes aegypti (Diptera, Culicidae) mosquitoes. Pest Manag Science 81:744–754. https://doi.org/10.1002/ps.8477

Article  CAS  Google Scholar 

Cozzer GD, Rezende RDS, Lara TS et al (2023) Predation risk effects on larval development and adult life of Aedes aegypti mosquito. Bull Entomol Res 113:29–36. https://doi.org/10.1017/S000748532200027X

Article  CAS  PubMed  Google Scholar 

Crawley MJ (2007) The R book. J. Wiley, Chichester (GB)

Erharuyi O, Imieje VO, Oseghale IO et al (2017) Identification of compounds and insecticidal activity of the root of pride of Barbados (Caesalpinia pulcherrima L). J Appl Sci Environ Manag 21:281. https://doi.org/10.4314/jasem.v21i2.8

Article  CAS  Google Scholar 

Gade S, Rajamanikyam M, Vadlapudi V, et al. (2017) Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochimica et Biophysica Acta (BBA) - General Subjects 1861:541–550. https://doi.org/10.1016/j.bbagen.2016.11.044

Garcez WS, Garcez FR, Silva LMGE, Sarmento UC (2013) Naturally occurring plant compounds with larvicidal activity against Aedes aegypti. Revista Virtual de Química 5:. https://doi.org/10.5935/1984-6835.20130034

Giejdasz K, Fliszkiewicz M, Wasielewski O (2021) Methoprene, a juvenile hormone analogue, modifies maturation and emergence in overwintering Osmia rufa L. adults. Apidologie 52:1387–1398. https://doi.org/10.1007/s13592-021-00908-z

Article  CAS  Google Scholar 

Guzman MG, Gubler DJ, Izquierdo A et al (2016) Dengue Infection Nat Rev Dis Primers 2:16055. https://doi.org/10.1038/nrdp.2016.55

Article  PubMed  Google Scholar 

Helvecio E, Romão TP, De Carvalho-Leandro D et al (2020) Polymorphisms in GSTE2 is associated with temephos resistance in Aedes aegypti. Pestic Biochem Physiol 165:104464. https://doi.org/10.1016/j.pestbp.2019.10.002

Article  CAS  PubMed  Google Scholar 

Huxley PJ, Murray KA, Pawar S, Cator LJ (2022) Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti. Commun Biol 5:66. https://doi.org/10.1038/s42003-022-03030-7

Article  PubMed  PubMed Central  Google Scholar 

Jain C, Khatana S, Vijayvergia R (2019) Bioactivity of secondary metabolites of various plants: a review. IJPSR 10:. https://doi.org/10.13040/IJPSR.0975-8232.10(2).494-04

Karl I, Fischer K (2008) Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia 155:215–225. https://doi.org/10.1007/s00442-007-0902-0

Article  PubMed  Google Scholar 

Khursheed A, Rather MA, Jain V et al (2022) Plant based natural products as potential ecofriendly and safer biopesticides: a comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb Pathog 173:105854. https://doi.org/10.1016/j.micpath.2022.105854

Article  CAS  PubMed  Google Scholar 

Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evolutionary Ecology Research, 251–268

Kramer IM, Kreß A, Klingelhöfer D et al (2020) Does winter cold really limit the dengue vector Aedes aegypti in Europe? Parasites Vectors 13:178. https://doi.org/10.1186/s13071-020-04054-w

Article  PubMed  PubMed Central  Google Scholar 

Kramer IM, Pfeiffer M, Steffens O et al (2021) The ecophysiological plasticity of Aedes aegypti and Aedes albopictus concerning overwintering in cooler ecoregions is driven by local climate and acclimation capacity. Sci Total Environ 778:146128. https://doi.org/10.1016/j.scitotenv.2021.146128

Article  CAS  PubMed  Google Scholar 

Kularatne SA, Dalugama C (2022) Dengue infection: global importance, immunopathology and management. Clin Med 22:9–13. https://doi.org/10.7861/clinmed.2021-0791

Article  Google Scholar 

Maccagnan JC, Monteiro M, Simomura VL, et al. (2023) Efeito larvicida e repelente do extrato aquoso de Uncaria tomentosa frente ao Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). PRW 5:209–224. https://doi.org/10.53660/753.prw1903

Mączka W, Duda-Madej A, Górny A et al (2021) Can eucalyptol replace antibiotics? Molecules 26:4933. https://doi.org/10.3390/molecules26164933

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marques A, C. Kaplan MA (2014) Active metabolites of the genus Piper against Aedes aegypti: natural alternative sources for dengue vector control. Univ Sci 20:61. https://doi.org/10.11144/Javeriana.SC20-1.amgp

Marsaro IB, Cozzer GD, Cararo ER, et al. (2023) Less is more: partial larvicidal efficacy of plant leachate leads to larger Aedes aegypti mosquitoes. Bull Entomol Res 1–9. https://doi.org/10.1017/S0007485323000366

Melo SJ, Sousa JPB, Sá MG et al (2021) Machaerium acutifolium compounds with larvicidal activity against Aedes aegypti. Pest Manag Sci 77:1444–1451. https://doi.org/10.1002/ps.6163

Article  CAS  PubMed  Google Scholar 

Nasir S, Jabeen F, Abbas S, et al. (2017) Effect of climatic conditions and water bodies on population dynamics of the dengue vector, Aedes aegypti (Diptera: Culicidae). Arthropod Borne Dis 11(1):50–59. PMID: 29026852; PMCID: PMC5629306

Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

Article  CAS  PubMed  Google Scholar 

Nik Abdull Halim NMH, Che Dom N, Dapari R et al (2022) A systematic review and meta-analysis of the effects of temperature on the development and survival of the Aedes mosquito. Front Public Health 10:1074028. https://doi.org/10.3389/fpubh.2022.1074028

Article  PubMed  PubMed Central  Google Scholar 

Ochoa-Martinez C, Tapia-Santos B, Kobylinski KC et al (2012) The dengue virus mosquito vector Aedes aegypti at high elevation in México. Am J Trop Med Hyg 87:902–909. https://doi.org/10.4269/ajtmh.2012.12-0244

Article  PubMed  PubMed Central  Google Scholar 

PAHO (2019) Evaluation of innovative strategies for Aedes aegypti control: challenges for their introduction and impact assessment. IRIS Institutional Repository for Information Sharing. https://iris.paho.org/handle/10665.2/51375. Accessed 14 June 2024

Parsons JT, Surgeoner GA (1991) Effect of exposure time on the acute toxicities of permethrin, fenitrothion, carbaryl and carbofuran to mosquito larvae. Enviro Toxic and Chemistry 10:1219–1227. https://doi.org/10.1002/etc.5620100913

Article  CAS  Google Scholar 

Paul P, Muralidharan K, Veeramuthu D (2025) Bioactive principle from Pentanema indicum against Aedes aegypti and Culex quinquefasciatus. Journal of Natural Pesticide Research 12:. https://doi.org/10.1016/j.napere.2025.100125.

Pinheiro Fernandes VM, Ferreira Da Silva Rocha AR, Sousa Da Silva VE, et al. (2024) Termoestabilidade de extratos Foliares de Croton L. (Euphorbiaceae) para o controle de Aedes aegypti. PRW 6:180–198. https://doi.org/10.53660/PRW-2129-3918

Comments (0)

No login
gif