Selectivity of Botanical and Synthetic Insecticides on : There Is No Simple Answer

Abreu KG, Brito CH de, Filho MC de O et al (2024) Physiological selectivity of aqueous extracts on nymphs and adults of Marava arachidis (Dermaptera: Labiidae). Rev Principia - Divulg Científica e Tecnológica do IFPB. https://doi.org/10.18265/1517-0306a2022id7259

Alali FQ, Liu X, Mclaughlin JL (1999) Annonaceous acetogenins : recent progress. J Nat Prod 62:504–540

Article  CAS  PubMed  Google Scholar 

Amarasekare KG, Shearer PW, Mills NJ (2016) Testing the selectivity of pesticide effects on natural enemies in laboratory bioassays. Biol Control 102:7–16. https://doi.org/10.1016/j.biocontrol.2015.10.015

Article  CAS  Google Scholar 

Andersen SO (2010) Insect cuticular sclerotization: a review. Insect Biochem Mol Biol 40:166–178. https://doi.org/10.1016/j.ibmb.2009.10.007

Article  CAS  PubMed  Google Scholar 

Andersen SO (2012) Cuticular sclerotization and tanning. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Academic Press, Copenhagen, pp 167–192

Chapter  Google Scholar 

Ansante TF, do Prado Ribeiro L, Bicalho KU et al (2015) Secondary metabolites from Neotropical Annonaceae: screening, bioguided fractionation, and toxicity to Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Ind Crops Prod 74:969–976. https://doi.org/10.1016/j.indcrop.2015.05.058

Article  CAS  Google Scholar 

Ansante TF, do Prado Ribeiro L, Vendramim JD (2017) Acute and chronic toxicities of an annonin-based commercial bioinsecticide and a joint mixture with a limonoid-based formulation to the fall armyworm. Neotrop Entomol 46:216–222. https://doi.org/10.1007/s13744-016-0448-0

Article  CAS  PubMed  Google Scholar 

Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225. https://doi.org/10.1146/annurev-ento-112408-085356.INSECT

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arroyo RM, De Souza JM, Da Silva NG et al (2023) Euborellia annulipes mortality and predation on Diatraea saccharalis eggs after application of chemical and biological insecticides. Agric Sci 14:11–22. https://doi.org/10.4236/as.2023.141002

Article  CAS  Google Scholar 

Azhar H, Khan A (2024) Lack of fitness costs associated with resistance to permethrin in Musca domestica. Sci Rep:1–11. https://doi.org/10.1038/s41598-023-50469-7

Bernardi D, Ribeiro L, Andreazza F et al (2017) Potential use of Annona by products to control Drosophila suzukii and toxicity to its parasitoid Trichopria anastrephae. Ind Crops Prod 110:30–35. https://doi.org/10.1016/j.indcrop.2017.09.004

Article  CAS  Google Scholar 

Blacher P, Huggins TJ, Bourke AFG, Blacher P (2017) Evolution of ageing , costs of reproduction and the fecundity – longevity trade-off in eusocial insects. Proc R Soc B 284. https://doi.org/10.1098/rspb.2017.0380

Bombasaro JA, Blessing LDT, Diaz S et al (2011) Theoretical and experimental study of the interactions of annonaceous acetogenins with artificial lipid bilayers. J Mol Struct 1003:87–91. https://doi.org/10.1016/j.molstruc.2011.07.035

Article  CAS  Google Scholar 

Bueno A de F, Carvalho GA, Dos Santos AC et al (2017) Pesticide selectivity to natural enemies: challenges and constraints for research and field recommendation. Ciênc Rural 47:1–6. https://doi.org/10.1590/0103-8478cr20160829

Article  CAS  Google Scholar 

Campos MR, Picanço MC, Martins JC et al (2011) Insecticide selectivity and behavioral response of the earwig Doru luteipes. Crop Prot 30:1535–1540. https://doi.org/10.1016/j.cropro.2011.08.013

Article  CAS  Google Scholar 

Cann R van, Jansen S, Brinkkemper S (2013) Noldus Information Technology. Softw. Bus. Start-up Memories

Castle S, Naranjo SE (2009) Sampling plans, selective insecticides and sustainability: the case for IPM as “informed pest management.” Pest Manag Sci 65:1321–1328. https://doi.org/10.1002/ps.1857

Article  CAS  PubMed  Google Scholar 

Colom OÁ, Neske A, Chahboune N et al (2009) Tucupentol, a novel mono-tetrahydrofuranic acetogenin from Annona montana, as a potent inhibitor of mitochondrial complex I. Chem Biodivers 6:335–340

Article  CAS  Google Scholar 

Cordeiro EMG, Corrêa AS, Venzon M, Guedes RNC (2010) Insecticide survival and behavioral avoidance in the lacewings Chrysoperla externa and Ceraeochrysa cubana. Chemosphere 81:1352–1357. https://doi.org/10.1016/j.chemosphere.2010.08.021

Article  CAS  PubMed  Google Scholar 

Costa S, De PSO, Martins GF (2016) Multiple modes of action of the squamocin in the midgut cells of Aedes aegypti larvae. PLoS ONE 11:1–13. https://doi.org/10.1371/journal.pone.0160928

Article  CAS  Google Scholar 

Cruz I, Alvarenga CD, Figueiredo PE (1995) Biologia de Doru luteipes (Scudder) e sua capacidade predatória de ovos de Helicoverpa zea (Boddie). In: Anais da Sociedade Entomológica do Brasil. pp 21–27

Cruz I (2007) Controle Biológico de Pragas na Cultura de Milho para Produção de Conservas (Minimilho), por Meio de Parasitóides e Predadores. In: Circ. Técnica Embrapa. https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/488526. Accessed 21 Nov 2022

De Loof A (2011) Longevity and aging in insects: is reproduction costly; cheap; beneficial or irrelevant? A critical evaluation of the “trade-off” concept. J Insect Physiol 57:1–11. https://doi.org/10.1016/j.jinsphys.2010.08.018

Article  CAS  PubMed  Google Scholar 

Desneux N, Decourtye A, Delpuech J (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440

Article  CAS  PubMed  Google Scholar 

Di Toto BL, Ramos J, Diaz S et al (2012) Insecticidal properties of annonaceous acetogenins and their analogues. Interaction with lipid membranes. Nat Prod Commun 7:1215–1218. https://doi.org/10.1177/1934578x1200700929

Article  Google Scholar 

Faleiro FG, Picanço MC, de Paula SV, Batalha VC (1995) Seletividade de inseticidas a Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) e ao predador Doru luteipes (Scudder) (Dermaptera: Forficulidae). An Soc Entomol Bras 24:247–252. https://doi.org/10.37486/0301-8059.v24i2.1024

Article  CAS  Google Scholar 

Ferreira ES, Rodrigues ARS, Silva-torres CSA, Torres JB (2013) Life-history costs associated with resistance to lambda-cyhalothrin in the predatory ladybird beetle Eriopis connexa. Agric For Entomol 15:168–177. https://doi.org/10.1111/j.1461-9563.2012.00599.x

Article  Google Scholar 

Fogel MN, Schneider MI, Rimoldi F et al (2016) Toxicity assessment of four insecticides with different modes of action on pupae and adults of Eriopis connexa (Coleoptera:Coccinellidae), a relevant predator of the Neotropical Region. Environ Sci Pollut Res 23:14918–14926. https://doi.org/10.1007/s11356-016-6654-9

Article  CAS  Google Scholar 

Freitas CD, Gontijo LM, Guedes RNC, Chediak M (2017) Survival and locomotory behavior of earwigs after exposure to reduced-risk insecticides. J Econ Entomol 110:1576–1582. https://doi.org/10.1093/jee/tox137

Article  PubMed  Google Scholar 

Gentz MC, Murdoch G, King GF (2010) Tandem use of selective insecticides and natural enemies for effective, reduced-risk pest management. Biol Control 52:208–215. https://doi.org/10.1016/j.biocontrol.2009.07.012

Article  Google Scholar 

Godoy MS, Carvalho GA, Carvalho BF, Lasmar O (2010) Seletividade fisiológica de inseticidas em duas espécies de crisopídeos. Pesqui Agropecu Bras 45:1253–1258. https://doi.org/10.1590/S0100-204X2010001100004

Article  Google Scholar 

Gomes FL (2018) Estudo fitoquímico e atividade inseticida de composição fitossanitária de Annona squamosa L. e Annona mucosa (Jacq.) Baill. (Annonaceae) para o controle de Plutella xylostella (L., 1758) (Lepidoptera: Plutellidae). Thesis, Universidade Federal de Alagoas

Gonçalves GLP, Ribeiro L do P, Vendramim JD (2021) Toxicities of Annona derivatives and semi-purified fractions against Zabrotes subfasciatus. Trop Subtrop Agroecosyst 24:115–124

Article  Google Scholar 

Gontijo LM, Celestino D, Queiroz OS et al (2015) Impacts of azadirachtin and chlorantraniliprole on the developmental stages of pirate bug predators (Hemiptera: Anthocoridae) of the tomato pinworm Tuta absoluta (Lepidoptera: Gelechiidae). Florida Entomol 98:59–64. https://doi.org/10.1653/024.098.0111

Article  Google Scholar 

Greene GL, Leppla NC, Dickerson WA (1976) Velvetbean caterpillar: a rearing procedure and artificial medium123. J Econ Entomol 69:487–488. https://doi.org/10.1093/jee/69.4.487

Article  Google Scholar 

Guedes RNC, Magalhães LC, Cosme LV (2009) Stimulatory sublethal response of a generalist predator to permethrin: Hormesis, hormoligosis, or homeostatic regulation? J Econ Entomol 102:170–176. https://doi.org/10.1603/029.102.0124

Article  CAS  PubMed  Google Scholar 

Guimarães MRF, Silva RB, Figueiredo MDLC (2006) Avanços na Metodologia de Criação de Doru luteipes (Scudder, 1876) (Dermaptera: Forficulidae). In: Congresso Nacional de Milho e Sorgo. Belo Horizonte, Minas Gerais, pp 7

Haddi K, Turchen LM, Jumbo OV et al (2020) Rethinking biorational insecticides for pest management : unintended effects and consequences. Pest Manag Sci 76:2286–2293. https://doi.org/10.1002/ps.5837

Article  CAS  PubMed  Google Scholar 

He F, Sun S, Tan H et al (2019) Compatibility of chlorantraniliprole with the generalist predator Coccinella septempunctata L. (Coleoptera:Coccinellidae) based toxicity, life-cycle development and population parameters in laboratory microcosms. Chemosphere 225:182–190

Comments (0)

No login
gif