Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW (2015) Cues from chewing insects: the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr Opin Plant Biol 26:80–86. https://doi.org/10.1016/j.pbi.2015.05.029
Article CAS PubMed Google Scholar
Alinç T, Cusumano A, Peri E, Torta L, Colazza S (2021) Trichoderma harzianum strain T22 modulates direct defense of tomato plants in response to Nezara viridula feeding activity. J Pest Sci 47:455–462. https://doi.org/10.1007/s10886-021-01260-3
Arimura GI, Ozawa R, Maffei ME (2011) Recent advances in plant early signaling in response to herbivory. Int J of Mol Sci 12:3723–3739. https://doi.org/10.3390/ijms12063723
Baldin ELL, Vendramim JD, Lourenção AL (2019) Resistência de plantas a insetos: fundamentos e aplicações. FEALQ, Piracicaba, Brazil
Barbehenn RV, Constabel PC (2011) Tannins in plant-herbivore interactions. Phytochem 72:1551–1565. https://doi.org/10.1016/j.phytochem.2011.01.040
Bernays EA, Chapman RF (1994) Host plant selection by phytophagous insects. Chapman and Hall, London, UK
Boiça Júnior AL, Souza BHS, Costa EN, Ribeiro ZA, Stout MJ (2015) Factors influencing expression of antixenosis in soybean to Anticarsia gemmatalis and Spodoptera frugiperda (Lepidoptera: Noctuidae). J Econ Entomol 108:317–325. https://doi.org/10.1093/jee/tou007
Article CAS PubMed Google Scholar
Boiça Júnior AL, Souza BHS, Costa EN, Paiva LB (2017) Influence of fall armyworm previous experience with soybean genotypes on larval feeding behavior. Arthropod-Plant Interact 11:89–97. https://doi.org/10.1007/s11829-016-9469-1
Boiça Júnior AL, Eduardo WI, Souza BHS, Moraes RFO, Louvandini H, Barbosa JC, Stout MJ (2022) Protocol for assessing soybean antibiosis to Chloridea virescens. Entomol Exp Appl 170:689–699. https://doi.org/10.1111/eea.13190
Burtekova L, Trda L, Ott PG, Vantova O (2015) Bio-based resistance inducers for sustainable crop protection against pathogens. Biotechnol Adv 33:994–1004. https://doi.org/10.1016/j.biotechadv.2015.01.004
Chakravarthy AK, Selvanarayanan V (2019) Experimental techniques in host-plant resistance. Springer, Singapore
Coppola M, Cascone P, Lelio ID, Woo SL, Lorito M, Rao R, Pennacchio F, Guerrieri E, Digilio MC (2019) Trichoderma atroviridae P1 colonization of tomato plants enhances both direct and indirect defense barriers against insects. Front Physiol 10:813. https://doi.org/10.3389/fphys.2019.00813
Article PubMed PubMed Central Google Scholar
Cosme M, Lu J, Erb M, Stout MJ, Franken P, Wurst S (2016) A fungal endophyte helps plants to tolerate root herbivory through changes in gibberelin and jasmonate signaling. New Phytol 211:1065–1076. https://doi.org/10.1111/nph.13957
Article CAS PubMed PubMed Central Google Scholar
Costa EN, Souza BHS, Ribeiro ZA, Santos DMM, Boiça Júnior AL (2021) Tolerance in maize landraces to Diabrotica speciosa (Coleoptera: Chrysomelidae) larvae and its relationship to plant pigments, compatible osmolytes, and vigor. J Econ Entomol 114:377–386. https://doi.org/10.1093/jee/toaa292
Article CAS PubMed Google Scholar
Costa DCM, Souza BHS, Carvalho CHS, Guerreiro Filho O (2024) Characterization and levels of resistance in Coffea arabica x Coffea racemosa hybrids to Leucoptera coffeella. J Pest Sci. https://doi.org/10.1007/s10340-024-01844-4
Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Agric 196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021
Eduardo WI, Boiça Júnior AL, Moraes RFO, Souza BHS, Louvandini H, Barbosa JC (2020) Protocol for assessing soybean antixenosis to Heliothis virescens. Entomol Exp Appl 168:911–927. https://doi.org/10.1111/eea.12997
Eghrari K, Brito AH, Baldassi A, Babuena TS, Fernandes OA, Môro GV (2019) Homozygous of Bt locus increases Bt protein expression and the control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize hybrids. Crop Prot 124:104871. https://doi.org/10.1016/j.cropro.2019.104871
Eghrari K, Oliveira SC, Nascimento AM, Queiroz B, Fatoretto J, Souza BHS, Fernades OA, Môro GV (2021) The implications of homozygous vip3Aa20 and cry1Ab-maize on Spodoptera frugiperda control. J Pest Sci 95:115–127. https://doi.org/10.1007/s10340-021-01362-7
Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608. https://doi.org/10.1111/j.1558-5646.1964.tb01674.x
Eisner T, Meinwald J (1995) Chemical ecology: the chemistry of biotic interaction. The National Academies Press, Washington, DC, USA
Erb M (2018) Plant defenses against herbivory: closing the fitness gap. Trends Plant Sci 23:187–194. https://doi.org/10.1016/j.tplants.2017.11.005
Article CAS PubMed Google Scholar
Fraenkel GS (1959) The raison d’être of secondary plant substances. Science 129:1466–1470. https://doi.org/10.1126/science.129.3361.1466
Article CAS PubMed Google Scholar
Freitas LM, Souza BHS, Ferreira FS, Antunes APA, Bruzi AT (2024) Resistance of Bt and non-Bt soybean cultivars adapted to novel growing regions of Brazil to Chrysodeixis includens and Spodoptera frugiperda. Neotrop Entomol 53:1332–1342. https://doi.org/10.1007/s13744-024-01208-8
Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference-performance relationships in phytophagous insects. Ecol Lett 13:383–393. https://doi.org/10.1111/j.1461-0248.2009.01433.x
Havens JN (1792) Observations on the Hessian fly. New York Soc Agric Trans Arts Manuf 1:89–107
Hermosa R, Rubio MB, Cardoza RE, Nicolás C, Monte E, Gutiérrez S (2013) The contribution of Trichoderma to balancing the costs of plant growth and defense. Int Microbiol 16:69–80. https://doi.org/10.2436/20.1501.01.181
Article CAS PubMed Google Scholar
Hoffmann-Campo CB, Harborne JB, McCaffery AR (2001) Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusia ni growth. Entomol Exp Appl 98: 181–194. https://doi.org/10.11046/j.1570-7458.2001.00773.x
Jaenike J (1978) On optimal oviposition behaviour in phytophagous insects. Theor Popul Biol 14:350–356. https://doi.org/10.1016/0040-5809(78)90012-6
Article CAS PubMed Google Scholar
Kallure GS, Kumari A, Shinde BA, Giri AP (2022) Characterized constituents of insect herbivore oral secretions and their influence on the regulation of plant defenses. Phytochem 193:113008. https://doi.org/10.1016/j.phytochem.2021.113008
Kesel JD, Conrath U, Flors V, Luna E, Mageroy MH, Mauch-Mani B, Pastor V, Pozo MJ, Pieterse CMJ, Ton J, Kyndt T (2021) The induced resistance lexicon: do’s and don’ts. Trends Plant Sci 26:685–691. https://doi.org/10.1016/j.tplants.2021.01.001
Article CAS PubMed Google Scholar
Knolhoff LM, Heckel DG (2014) Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Annu Rev Entomol 59:263–278. https://doi.org/10.1146/annurev-ento-011613-161945
Article CAS PubMed Google Scholar
Kogan M, Ortman E (1978) Antixenosis: a term proposed to define Painter’s “Nonpreference” modality of resistance. ESA Bull 24:175–176. https://doi.org/10.1093/besa/24.2.175
Konno K (2011) Plant latex and other exudates as plant defenses: roles of various defense chemicals and proteins contained herein. Phytochem 72:1510–1530. https://doi.org/10.1016/j.phytochem.2011.02.016
Koul O, Dhaliwal GS, Cuperus GW (2004) Integrated pest management: potential, constraints, and challenges. CABI Publishing, Wallingford, England
Lara FM (1991) Princípios de resistência de plantas a insetos. Ícone, São Paulo, Brazil
Leimu R, Koricheva J (2006) A meta-analysis of tradeoffs between plant tolerance and resistance to herbivores: combining the evidence from ecological and agricultural studies. Oikos 112:1–9. https://doi.org/10.1111/j.0030-1299.2006.41023.x
Comments (0)