Optimizing spp. Protection: Parasitoids and Microorganisms Agents for Management

Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Am Mosq Control Assoc 3(2):302–303

Google Scholar 

Aguilera CA, Cázares CL (2003) Grana cochinilla: Comparación de métodos de producción en penca cortada. Agrociencia 37(1):11–19

Google Scholar 

Allahyari R, Aramideh S, Safaralizadeh MH, Rezapanah M, Michaud JP (2020) Synergy between parasitoids and pathogens for biological control of Helicoverpa armigera in chickpea. Entomol Exp Appl 168:70–75

CAS  Google Scholar 

Aqueel MA, Leather SR (2013) Virulence of Verticillium lecanii (Z.) against cereal aphids; does timing of infection affect the performance of parasitoids and predators? Pest Manag Sci 69:493–498

CAS  Google Scholar 

Arasu MV, Al-Dhabi NA, Saritha V, Duraipandiyan V, Muthukumar C, Kim SJ (2013) Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiol 13:105. https://doi.org/10.1186/1471-2180-13-105

Bergamin Filho A, Amorim L (1999) Manejo integrado de pragas (IPM): problemas conceituais para sua aplicação em Fitopatologia. Fitopatol Bras 24:385–390

Google Scholar 

Binod P, Sukumaran RK, Shirke SV, Rajput JC, Pandey A (2007) Evaluation of fungal culture filtrate containing chitinase as a biocontrol agent against Helicoverpa armigera. J Appl Microbiol 103:1845–1852

CAS  Google Scholar 

Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

CAS  Google Scholar 

Broadway RM, Gongora C, Kain WC, Sanderson JP, Monroy JA, Bennett KC, Warner JB, Hoffmann MP (1998) Novel chitinolytic enzymes with biological activity against herbivorous insects. J Chem Ecol 24:985–998

CAS  Google Scholar 

Carneiro-Leão MP, Tiago PV, Medeiros LV, da Costa AF, de Oliveira NT (2017) Dactylopius opuntiae: control by the Fusarium incarnatum–equiseti species complex and confirmation of mortality by DNA fingerprinting. J Pest Sci 90(3):925–933

Google Scholar 

de Souza Born F, Cerqueira de Araújo MJ, Monaísy Alencar, Lima H, de Melo RV, Forti Broglio-Micheletti SM, Prédes Trindade RC, Pinto de Lemos EE, Passos da Silva DM (2009) Control of Diaspis echinocacti (Bouché, 1833) (Hemiptera: Diaspididae) in prickly-pear. Acta Hort 811:223–226

El Aalaoui M, Sbaghi M (2023a) Population fluctuations, diversity and effectiveness of natural enemies associated with the cactus scale Diaspis echinocacti (Bouché)(Hemiptera: Diaspididae) in Morocco. Phytoparasitica 51:1059–1072

Google Scholar 

El Aalaoui M, Sbaghi M (2023b) Potential of parasitoids to control Diaspis echinocacti (Bouché)(Hemiptera: Diaspididae) on Opuntia spp. cactus pear. Egypt. J. Biol. Pest Control 33(1): 57

El Aalaoui M, Sbaghi M (2024) Temperature effects on the cactus scale Diaspis echinocacti (Bouché): Insights into development, survival, and reproduction. Crop Prot 179:106624

Google Scholar 

El Aalaoui M, Rammali S, Sbaghi M (2024a). Biological control of Dactylopius opuntiae (Cockerell) using entomopathogenic fungi in Morocco. Bicontrol Sci Technol: 1–22. https://doi.org/10.1080/09583157.2024.2405154

El Aalaoui M, Rammali S, Bencharki B, Sbaghi M (2024b) Integrated Biological Control of Diaspis echinocacti (Bouché) on Opuntia ficus-indica (L.) Mill (Cactaceae) Using Predatory Ladybirds and Fungal Pathogens. Crop Prot 187: 106950

El Aalaoui M, Rammali S, Kamal FZ, Lefter R, Burlui V, Alin C, Antoneta DP, Otilia N, Bogdan N, Sbaghi M (2024c) Biocontrol of Phenacoccus solenopsis Tinsley using entomopathogenic fungi and bacteria. Front Sustain Food Syst 8:1444917

Google Scholar 

Fazeli-Dinan M, Talaei-Hassanloui R, Goettel M (2016) Virulence of the entomopathogenic fungus Lecanicillium longisporum against the greenhouse whitefly, Trialeurodes vaporariorum and its parasitoid Encarsia formosa. Int J Pest Manag 62:251–260

Google Scholar 

Finney DJ (1971) Probit analysis. Cambridge University Press, Cambridge, UK

Google Scholar 

Gillespie MAK, Gurr GM, Wratten SD (2016) Beyond nectar provision: the other resource requirements of parasitoid biological control agents. Entomol Exp Appl 159:207–221

Google Scholar 

Goettel MS, Inglis DG (1997) Fungi: hyphomycetes. In: Lacey L (ed) Manual of Techniques in Insect Pathology. Academic Press, London, UK, pp 213–249

Google Scholar 

Gonthier J, Arnó J, Romeis J, Collatz J (2023) Few indirect effects of baculovirus on parasitoids demonstrate high compatibility of biocontrol methods against Tuta absoluta. Pest Manag Sci 79:1431–1441

CAS  Google Scholar 

Gul HT, Saeed S, Khan FZA (2014) Entomopathogenic fungi as effective insect pest management tactic: a review. Appl Sci Bus Econ 1:10–18

Google Scholar 

Haye T, Wyniger D, Gariepy T (2014) Recent range expansion of brown marmorated stink bug in Europe. In: Müller G, Pospischil R, Robinson WH (eds.) Proceedings of the eighth international conference on Urban Pests, 20–23 July, Zurich: 309–314

Ibarra-Cortés KH, González-Hernández H, Guzmán-Franco AW, Ortega-Arenas LD, Villanueva-Jiménez JA, Robles-Bermúdez A (2018) Interactions between entomopathogenic fungi and Tamarixia radiata (Hymenoptera: Eulophidae) in Diaphorina citri (Hemiptera: Liviidae) populations under laboratory conditions. J Pest Sci 91:373–384

Google Scholar 

Japoshvili GO, Stathas GJ, Kampouris SG (2010) Natural enemies of Diaspis echinocacti in Greece and first records of Aphytis debachi and Plagiomerus diaspidis. Phytoparasitica 38:121–123

Google Scholar 

Jervis MA, Ellers J, Harvey JA (2008) Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu Rev Entomol 53(1):361–385

CAS  Google Scholar 

Kim JY, Choi JY, Park DH, Park MG, Wang M, Kim HJ, Kim SH, Lee HY, Je YH (2022) Juvenile hormone antagonistic activity of secondary metabolites from Streptomyces lactacystinicus and their insecticidal activity against Plutella xylostella. J Asia Pac Entomol 25:101870

Google Scholar 

Koller J, Sutter L, Gonthier J, Collatz J, Norgrove L (2023) Entomopathogens and parasitoids allied in biocontrol: a systematic review. Pathogens 12:957

Google Scholar 

Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

CAS  Google Scholar 

Marimuthu S, Karthic C, Mostafa AA, Al-Enazi NM, Abdel-Raouf N, Sholkamy EN (2020) Antifungal activity of Streptomyces sp. SLR03 against tea fungal plant pathogen Pestalotiopsis theae. J King Saud Univ 32:3258–3264

Google Scholar 

Miranda-Fuentes P, Quesada-Moraga E, Aldebis HK, Yousef-Naef M (2020) Compatibility between the endoparasitoid Hyposoter didymator and the entomopathogenic fungus Metarhizium brunneum: a laboratory simulation for the simultaneous use to control Spodoptera littoralis. Pest Manag Sci 76:1060–1070

CAS  Google Scholar 

Mohammed AA, Hatcher PE (2017) Combining entomopathogenic fungi and parasitoids to control the green peach aphid Myzus persicae. Biol Control 110:44–55

Google Scholar 

Musser FR, Nyrop JP, Shelton AM (2006) Integrating biological and chemical controls in decision making: European corn borer (Lepidoptera: Crambidae) control in sweet corn as an example. J Econ Entomol 99:1538–1549

CAS  Google Scholar 

Mwamburi LA (2020) Beauveria. Benef Microbes Agro-Ecology 727–748

Nishimatsu T, Jackson JJ (1998) Interaction of insecticides, entomopathogenic nematodes, and larvae of the western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 91:410–418

CAS  Google Scholar 

Oetting RD (1984) Biology of the cactus scale, Diaspis echinocacti (Bouche)(Homoptera: Diaspididae). Ann Entomol Soc Am 77:88–92

Google Scholar 

Okongo RN, Puri AK, Wang Z, Singh S, Permaul K (2019) Comparative biocontrol ability of chitinases from bacteria and recombinant chitinases from the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng 127:663–671

CAS  Google Scholar 

Ouguas Y, Cherkaoui B, Bouchtalla A, Chakhmani A, Ilham M (2022) Larvicidal effect of three entomopathogenic fungi on the carmine scale of the prickly pear. V International Symposium on Pomegranate and Minor Mediterranean Fruits 1349:195–202

Google Scholar 

Potrich M, Alves LFA, Lozano E, Roman JC (2015) Interactions between B eauveria bassiana and T richogramma pretiosum under laboratory conditions. Entomol Exp Appl 154:213–221

Google Scholar 

Presa-Parra E, Hernández-Rosas F, Bernal JS, Valenzuela-González JE, Martínez-Tlapa J, Birke A (2021) Impact of Metarhizium robertsii on adults of the parasitoid Diachasmimorpha longicaudata and parasitized Anastrepha ludens larvae. Insects 12:125

Google Scholar 

Quesada-Moraga E, Garrido-Jurado I, Yousef-Yousef M, González-Mas N (2022) Multitrophic interactions of entomopathogenic fungi in BioControl. Biocontrol 67:457–472. https://doi.org/10.1007/s10526-022-10163-5

Google Scholar 

Rammali S, El aalaoui M, Sbaghi M, Dari K, Bencharki B, Azeroual A, Khattabi A (2023) Insecticidal potential of Streptomyces sp. dichloromethane extracts sp. against the cactus cochineal cochineal Dactylopius opuntiae (Cockerell). Not Sci Biol 13:1–12

Rammali S, Hilali L, Dari K, Bencharki B, Rahim A, Timinouni M, Gaboune F, El Aalaoui M, Khattabi A (2022) Antimicrobial and antioxidant activities of Streptomyces species from soils of three different cold sites in the Fez-Meknes region Morocco. Sci Rep 12:1–22

Google Scholar 

Ramos Aguila LC, Akutse KS, Ashraf HJ, Bamisile BS, Lin J, Dai J, Wang H, Wang L (2021) The survival and parasitism rate of Tamarixia radiata (Hymenoptera: Eulophidae) on its host exposed to Beauveria bassiana (Ascomycota: Hypocreales). Agronomy 11:1496

Google Scholar 

Rogge SA, Mayerhofer J, Enkerli J, Bacher S, Grabenweger G (2017) Preventive application of an entomopathogenic fungus in cover crops for wireworm control. Biocontrol 62:613–623

Google Scholar 

Rosen D, DeBach P (1979) Species of Aphytis of the world (Hymenoptera: Aphelinidae). Dr. W. Junk BV, The Hague the Netherlands

Roy HE, Pell JK (2000) Interactions between entomopathogenic fungi and other natural enemies: implications for biological control. Biocontrol Sci Technol 10:737–752

Google Scholar 

Ruiu L (2015) Insect pathogenic bacteria in integrated pest management. Insects 6:352–367

Google Scholar 

Sabbahi R, Hock V, Azzaoui K, Saoiabi S, Hammouti B (2022) A global perspective of entomopathogens as microbial biocontrol agents of insect pests. J Agric Food Res 10:100376

CAS  Google Scholar 

Salunkhe RB, Patil CD, Salunke BK, Rosas-Garcia NM, Patil SV (2013) Effect of wax degrading bacteria on life cycle of the pink hibiscus mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae). Biocontrol 58:535–542

CAS  Google Scholar 

Sedaratian-Jahromi A (2021a) Effects of entomopathogens on insect predators and parasitoids. In: Khan, M.A. & Ahmad, W. (Eds.), Microbes for sustainable insect pest management. Sustain ability in plant and crop protection, Vol. 17. Springer, Cham, pp. 183–231

Sedaratian-Jahromi A (2021b) Effects of entomopathogens on insect predators and parasitoids. Microbes Sustain Lnsect Pest Manag Hydrolytic Enzym & Second Metab 2:183–231

Google Scholar 

Sharma I, Sharma A (2014) Use of Alternaria spp. as a pest control agent : a review. World Appl Sci J 31:1869–1872

Google Scholar 

Shrestha G, Enkegaard A, Reddy GVP, Skovgard H, Steenberg T (2017) Susceptibility of larvae and pupae of the aphid parasitoid Aphelinus abdominalis (Hymenoptera: Aphelinidae) to the entomopathogenic fungus Beauveria bassiana. Ann Entomol Soc Am 110:121–127

CAS  Google Scholar 

Singh KA, Nangkar I, Landge A, Rana M, Srivastava S (2024) Entomopathogens and their role in insect pest management. J Biol Control 38(1):1–17

CAS  Google Scholar 

Soliman MAW, Hamza AF, Zahran NF, Bassioni G (2021) Microbiological study and insecticidal potential of purified extract from Streptomyces sp. on the larvae of Galleria mellonella. J Plant Dis Prot 128:1565–1574

CAS  Google Scholar 

Stark JD, Banks JE, Acheampong S (2004) Estimating susceptibility of biological control agents to pesticides: influence of life history strategies and population structure. Biol Control 29:392–398

Google Scholar 

Tamayo-Mejía F, Tamez-Guerra P, Guzmán-Franco AW, Gomez-Flores R (2015) Can Beauveria bassiana Bals. (Vuill)(Ascomycetes: Hypocreales) and Tamarixia triozae (Burks)(Hymenoptera: Eulophidae) be used together for improved biological control of Bactericera cockerelli (Hemiptera: Triozidae)? Biol Control 90:42–48

Google Scholar 

Tiago PV, Medeiros LV, Carneiro Leao MP, Santos ACDS, da Costa AF, de Oliveira NT (2016) Polymorphisms in entomopathogenic fusaria based on inter simple sequence repeats. Biocontrol Sci Technol 26(10):1401–1410

Google Scholar 

Trjapitzin VA (1989) Parasitic Hymenoptera of the Fam. Encyrtidae of Palae arctics. Opredeliteli po Faune SSSR. Leningrad, Russia: Zoologicheskim Institutom Akademii Nauk SSR (in Russian)

Vega FE, Meyling NV, Luangsa-ard JJ, Blackwell M (2012) Fungal Entomopathogens Insect Pathol 2:171–220

Comments (0)

No login
gif