Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A (2020) Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol 77:38–52
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F (2021) Cancer statistics for the year 2020: an overview. Int J Cancer 149:778–789
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249
Wang L, Lu B, He M, Wang Y, Wang Z, Du L (2022) Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front Public Health 10:811044
Article PubMed PubMed Central Google Scholar
Hsieh T-F, Chen H-L, Hsia Y-F, Lin C-C, Chiang H-Y, Wu M-Y, Chen S-H, Hsieh P-F, Wu H-C, Chang H, Kuo C-C (2023) Age-specific percentile-based prostate-specific antigen cutoff values predict the risk of prostate cancer: a single hospital observation. Biomedicine 13:9–24
Article PubMed PubMed Central Google Scholar
Jang J, Kim J, Lee HJ, Chang JH (2021) Transrectal ultrasound and photoacoustic imaging probe for diagnosis of prostate cancer. Sensors 21:1217
Article CAS PubMed PubMed Central Google Scholar
Tamada T, Miyaji Y, Kanomata N, Kido A, Yamamoto A, Sone T (2019) Early experience with MRI-ultrasound fusion-guided prostate biopsy in Japanese men with elevated PSA LEVELS. Magn Reson Med Sci 18:301–303
Article PubMed PubMed Central Google Scholar
Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K, Hindley RG, Freeman A, Kirkham AP, Oldroyd R, Parker C, Emberton M, PROMIS study group (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389:815–822
Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Tempany CM, Choyke PL, Cornud F, Margolis DJ, Thoeny HC, Verma S, Barentsz J, Weinreb JC (2019) Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 76:340–351
Fernandes MC, Yildirim O, Woo S, Vargas HA, Hricak H (2022) The role of MRI in prostate cancer: current and future directions. Magn Reson Mater Phy 35:503–521
Padhani AR, Barentsz J, Villeirs G, Rosenkrantz AB, Margolis DJ, Turkbey B, Thoeny HC, Cornud F, Haider MA, Macura KJ, Tempany CM, Verma S, Weinreb JC (2019) PI-RADS Steering Committee: the PI-RADS multiparametric MRI and MRI-directed Biopsy Pathway. Radiology 292:464–474
O’Shea A, Harisinghani M (2022) PI-RADS: multiparametric MRI in prostate cancer. Magn Reson Mater Phy 35:523–532
Plodeck V, Radosa CG, Hübner H-M, Baldus C, Borkowetz A, Thomas C, Kühn J-P, Laniado M, Hoffmann R-T, Platzek I (2020) Rectal gas-induced susceptibility artefacts on prostate diffusion-weighted MRI with epi read-out at 3.0 T: does a preparatory micro-enema improve image quality? Abdom Radiol 45:4244–4251
Ullrich T, Quentin M, Schmaltz AK, Arsov C, Rubbert C, Blondin D, Rabenalt R, Albers P, Antoch G, Schimmöller L (2018) Hyoscine butylbromide significantly decreases motion artefacts and allows better delineation of anatomic structures in mp-MRI of the prostate. Eur Radiol 28:17–23
Article CAS PubMed Google Scholar
Ullrich T, Quentin M, Oelers C, Dietzel F, Sawicki LM, Arsov C, Rabenalt R, Albers P, Antoch G, Blondin D, Wittsack HJ, Schimmöller L (2017) Magnetic resonance imaging of the prostate at 1.5 versus 3.0T: a prospective comparison study of image quality. Eur J Radiol 90:192–197
Article CAS PubMed Google Scholar
Vos EK, Lagemaat MW, Barentsz JO, Fütterer JJ, Zámecnik P, Roozen H, Orzada S, Bitz AK, Maas MC, Scheenen TWJ (2014) Image quality and cancer visibility of T2-weighted magnetic resonance imaging of the prostate at 7 Tesla. Eur Radiol 24:1950–1958
Article CAS PubMed Google Scholar
Rosenkrantz AB, Bennett GL, Doshi A, Deng F-M, Babb JS, Taneja SS (2015) T2-weighted imaging of the prostate: impact of the BLADE technique on image quality and tumor assessment. Abdom Imaging 40:552–559
Delakis I, Xanthis C, Kitney RI (2009) Assessment of the limiting spatial resolution of an MRI scanner by direct analysis of the edge spread function. Med Phys 36:1637–1642
Steckner MC, Drost DJ, Prato FS (1994) Computing the modulation transfer function of a magnetic resonance imager. Med Phys 21:483–489
Article CAS PubMed Google Scholar
Miyati T, Fujita H, Kasuga T, Koshida K, Sanada S, Banno T, Mase M, Yamada K (2002) Measurements of MTF and SNR(f) using a subtraction method in MRI. Phys Med Biol 47:2961–2972
Yoshida R, Machida Y (2020) Single-plate method for practical modulation transfer function measurement in magnetic resonance imaging. Radiol Phys Technol 13:358–364
IEC_62464–1–2018_MRI-Part1_Spatial Resolution (2018)
Takeuchi T, Hayashi N, Asai Y, Kayaoka Y, Yoshida K (2022) Novel method for evaluating spatial resolution of magnetic resonance images. Phys Eng Sci Med 45:487–496
Takeuchi T, Hayashi N, Ujita K, Sato Y, Taketomi-Takahashi A, Suto T, Tsushima Y (2024) Optimization of 3D imaging time reduction by assessing spatial resolution in the slice selective direction using the ladder method. Magn Reson Imaging 114:110246
Caglic I, Hansen NL, Slough RA, Patterson AJ, Barrett T (2017) Evaluating the effect of rectal distension on prostate multiparametric MRI image quality. Eur J Radiol 90:174–180
Gassenmaier S, Afat S, Nickel D, Mostapha M, Herrmann J, Othman AE (2021) Deep learning-accelerated T2-weighted imaging of the prostate: reduction of acquisition time and improvement of image quality. Eur J Radiol 137:109600
Wang F, Li X, Lin C, Zhu L (2024) Diagnostic accuracy and image quality evaluation of ultrashort echo time MRI in the lungs. Medicine (Baltimore) 103:e40386
Article CAS PubMed Google Scholar
Medved M, Soylu-Boy FN, Karademir I, Sethi I, Yousuf A, Karczmar GS, Oto A (2014) High-resolution diffusion-weighted imaging of the prostate. AJR Am J Roentgenol 203:85–90
Brennan DL, Lazarakis S, Lee A, Tan TH, Chin KY, Oon SF (2021) Do antispasmodics or rectal enemas improve image quality on multiparametric prostate MRI? An “Evidence-Based Practice” review of the literature. Abdom Radiol 46:2770–2778
Slough RA, Caglic I, Hansen NL, Patterson AJ, Barrett T (2018) Effect of hyoscine butylbromide on prostate multiparametric MRI anatomical and functional image quality. Clin Radiol 73:216.e9-216.e14
Article CAS PubMed Google Scholar
Schmidt C, Hötker AM, Muehlematter UJ, Burger IA, Donati OF, Barth BK (2021) Value of bowel preparation techniques for prostate MRI: a preliminary study. Abdom Radiol 46:4002–4013
Barrett T, Priest AN, Lawrence EM, Goldman DA, Warren AY, Gnanapragasam VJ, Sala E, Gallagher FA (2015) Ratio of tumor to normal prostate tissue apparent diffusion coefficient as a method for quantifying DWI of the prostate. AJR Am J Roentgenol 205:W585-593
Czarniecki M, Caglic I, Grist JT, Gill AB, Lorenc K, Slough RA, Priest AN, Barrett T (2018) Role of PROPELLER-DWI of the prostate in reducing distortion and artefact from total hip replacement metalwork. Eur J Radiol 102:213–219
Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24:478–488
Comments (0)