Agreement of image quality metrics with radiological evaluation in the presence of motion artifacts

Tisdall MD, Küstner T (2022) Metrics for motion and mr quality assessment. In: Advances in magnetic resonance technology and applications, vol 6. Elsevier, pp 99–116

Heckel R, Jacob M, Chaudhari A, Perlman O, Shimron E (2024) Deep Learning for accelerated and robust MRI reconstruction: a review. MAGMA 37(3):335–368

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spieker V, Eichhorn H, Hammernik K, Rueckert D, Preibisch C, Karampinos DC, Schnabel JA (2024) Deep learning for retrospective motion correction in MRI: a comprehensive review. IEEE Trans Med Imaging 43(2):846–859

Article  PubMed  Google Scholar 

Breger A, Biguri A, Landman MS, Selby I, Amberg N, Brunner E, Gröhl J, Hatamikia S, Karner C, Ning L, et al (2024) A study of why we need to reassess full reference image quality assessment with medical images. arXiv preprint arXiv:2405.19097

Barrett HH, Yao J, Rolland JP, Myers KJ (1993) Model observers for assessment of image quality. Proc Natl Acad Sci 90(21):9758–9765

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mason A, Rioux J, Clarke SE, Costa A, Schmidt M, Keough V, Huynh T, Beyea S (2020) Comparison of objective image quality metrics to expert radiologists’ scoring of diagnostic quality of MR images. IEEE Trans Med Imaging 39(4):1064–1072

Article  PubMed  Google Scholar 

Kastryulin S, Zakirov J, Pezzotti N, Dylov DV (2023) Image quality assessment for magnetic resonance imaging. IEEE Access 11:14154–14168

Article  Google Scholar 

Eichhorn H, Chemnitz-Thomsen S, Vouros E, Shekhrajka N, Frost R, Kouwe A, Ganz M (2022) Evaluating the match of image quality metrics with radiological assessment in a dataset with and without motion artifacts. In: Proceedings of 31st annual meeting, international society for magnetic resonance in medicine, London, UK, p. 2061

Marchetto E, Eichhorn H, Gallichan D, Schwarz ST, Shekhrajka N, Ganz M (2024) Assessing image quality metric alignment with radiological evaluation in datasets with and without motion artifacts. In: Proceedings of 33rd annual meeting, international society for magnetic resonance in medicine, Singapore, p 3019

Knoll F, Murrell T, Sriram A, Yakubova N, Zbontar J, Rabbat M, Defazio A, Muckley MJ, Sodickson DK, Zitnick CL, Recht MP (2020) Advancing machine learning for MR image reconstruction with an open competition: overview of the 2019 fastMRI challenge. Magn Reson Med 84(6):3054–3070

Article  PubMed  PubMed Central  Google Scholar 

...Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck J-L, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F (2021) Results of the 2020 fastMRI challenge for machine learning MR image reconstruction. IEEE Trans Med Imaging 40(9):2306–2317

Article  PubMed  PubMed Central  Google Scholar 

Terpstra M, van den Berg C (2024) To ssim, or to not ssim: Investigating the impact of image artifacts and motion on image quality metrics. In: Proceedings of 33rd annual meeting, international society for magnetic resonance in medicine, Singapore, p. 1823

Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2018) The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, pp. 586–595

Adamson PM, Desai AD, Dominic J, Bluethgen C, Wood JP, Syed AB, Boutin RD, Stevens KJ, Vasanawala S, Pauly JM, Chaudhari AS (2023) Using deep feature distances for evaluating MR image reconstruction quality (NeurIPS 2023 workshop on deep learning and inverse problems. Submission 37.)

Miao J, Huo D, Wilson DL (2008) Quantitative image quality evaluation of MR images using perceptual difference models. Med Phys 35(6Part1):2541–2553

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Di A, Haldar JP (2024) The “hidden noise’’ problem in MR image reconstruction. Magn Reson Med 92(3):982–996

Article  CAS  PubMed  Google Scholar 

Chow LS, Paramesran R (2016) Review of medical image quality assessment. Biomed Signal Process Control 27:145–154

Article  Google Scholar 

Ganz M, EH (2022) Datasets with and without deliberate head movements for evaluating the performance of markerless prospective motion correction and selective reacquisition in a general clinical protocol for brain MRI. Web site: https://openneuro.org/datasets/ds004332/versions/1.0.0. Accessed October 2024

Marchetto E, Murphy K, Glimberg SL, Gallichan D (2023) Robust retrospective motion correction of head motion using navigator-based and markerless motion tracking techniques. Magn Reson Med 90(4):1297–1315

Article  PubMed  PubMed Central  Google Scholar 

McGee KP, Manduca A, Felmlee JP, Riederer SJ, Ehman RL (2000) Image metric-based correction (autocorrection) of motion effects: analysis of image metrics. J Magn Reson Imaging 11(2):174–181

Article  CAS  PubMed  Google Scholar 

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

Article  PubMed  Google Scholar 

Hore A, Ziou D (2010) Image quality metrics: Psnr vs. ssim. 20th international conference on pattern recognition, 2366–2369

Zhang L, Zhang L, Mou X, Zhang D (2011) Fsim: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

Article  PubMed  Google Scholar 

Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15(2):430–444

Article  PubMed  Google Scholar 

Kecskemeti S, Samsonov A, Velikina J, Field AS, Turski P, Rowley H, Lainhart JE, Alexander AL (2018) Robust motion correction strategy for structural MRI in unsedated children demonstrated with three-dimensional radial mpnrage. Radiology 289(2):509–516

Article  PubMed  Google Scholar 

Pannetier NA, Stavrinos T, Ng P, Herbst M, Zaitsev M, Young K, Matson G, Schuff N (2016) Quantitative framework for prospective motion correction evaluation. Magn Reson Med 75(2):810–816

Article  PubMed  Google Scholar 

Zaca D, Hasson U, Minati L, Jovicich J (2018) Method for retrospective estimation of natural head movement during structural MRI. J Magn Reson Imaging 48(4):927–937

Article  PubMed  Google Scholar 

Atkinson D, Hill DL, Stoyle PN, Summers PE, Keevil SF (1997) Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans Med Imaging 16(6):903–910

Article  CAS  PubMed  Google Scholar 

Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

Article  PubMed  PubMed Central  Google Scholar 

Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841

Article  PubMed  Google Scholar 

Sullivan GM, Artino AR Jr (2013) Analyzing and interpreting data from likert-type scales. J Grad Med Educ 5(4):541–542

Article  PubMed  PubMed Central  Google Scholar 

Spearman C (1987) The proof and measurement of association between two things. Am J Psychol 100(3/4):441–471

Article  CAS  PubMed  Google Scholar 

Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appropriate use and interpretation. Anesthesia Analgesia 126(5):1763–1768

Article  PubMed  Google Scholar 

Bazin P-L, Nijsse HE, Zwaag W, Gallichan D, Alkemade A, Vos FM, Forstmann BU, Caan MW (2020) Sharpness in motion corrected quantitative imaging at 7t. Neuroimage 222:117227

Article  PubMed  Google Scholar 

Mortamet B, Bernstein MA, Jack CR Jr, Gunter JL, Ward C, Britson PJ, Meuli R, Thiran J-P, Krueger G (2009) Automatic quality assessment in structural brain magnetic resonance imaging. Magn Reson Med 62(2):365–372

Article  PubMed  PubMed Central  Google Scholar 

Pizarro RA, Cheng X, Barnett A, Lemaitre H, Verchinski BA, Goldman AL, Xiao E, Luo Q, Berman KF, Callicott JH et al (2016) Automated quality assessment of structural magnetic resonance brain images based on a supervised machine learning algorithm. Front Neuroinform 10:52

Article  PubMed  PubMed Central  Google Scholar 

Küstner T, Liebgott A, Mauch L, Martirosian P, Bamberg F, Nikolaou K, Yang B, Schick F, Gatidis S (2018) Automated reference-free detection of motion artifacts in magnetic resonance images. Magn Reson Mater Phys 31:243–256

Article  Google Scholar 

Ecker V, Früh M, Yang B, Gatidis S, Küstner T (2024) Self-supervised contrastive learning for automatic image quality assessment in whole-body MRI: Preliminary results in UK biobank. In: Proceedings of 33rd annual meeting, international society for magnetic resonance in medicine, Singapore, p. 2653

Kovesi P (1999) Image features from phase congruency. Videre: J Comput Vis Res 1(3):1–26

Google Scholar 

Comments (0)

No login
gif