Tisdall MD, Küstner T (2022) Metrics for motion and mr quality assessment. In: Advances in magnetic resonance technology and applications, vol 6. Elsevier, pp 99–116
Heckel R, Jacob M, Chaudhari A, Perlman O, Shimron E (2024) Deep Learning for accelerated and robust MRI reconstruction: a review. MAGMA 37(3):335–368
Article CAS PubMed PubMed Central Google Scholar
Spieker V, Eichhorn H, Hammernik K, Rueckert D, Preibisch C, Karampinos DC, Schnabel JA (2024) Deep learning for retrospective motion correction in MRI: a comprehensive review. IEEE Trans Med Imaging 43(2):846–859
Breger A, Biguri A, Landman MS, Selby I, Amberg N, Brunner E, Gröhl J, Hatamikia S, Karner C, Ning L, et al (2024) A study of why we need to reassess full reference image quality assessment with medical images. arXiv preprint arXiv:2405.19097
Barrett HH, Yao J, Rolland JP, Myers KJ (1993) Model observers for assessment of image quality. Proc Natl Acad Sci 90(21):9758–9765
Article CAS PubMed PubMed Central Google Scholar
Mason A, Rioux J, Clarke SE, Costa A, Schmidt M, Keough V, Huynh T, Beyea S (2020) Comparison of objective image quality metrics to expert radiologists’ scoring of diagnostic quality of MR images. IEEE Trans Med Imaging 39(4):1064–1072
Kastryulin S, Zakirov J, Pezzotti N, Dylov DV (2023) Image quality assessment for magnetic resonance imaging. IEEE Access 11:14154–14168
Eichhorn H, Chemnitz-Thomsen S, Vouros E, Shekhrajka N, Frost R, Kouwe A, Ganz M (2022) Evaluating the match of image quality metrics with radiological assessment in a dataset with and without motion artifacts. In: Proceedings of 31st annual meeting, international society for magnetic resonance in medicine, London, UK, p. 2061
Marchetto E, Eichhorn H, Gallichan D, Schwarz ST, Shekhrajka N, Ganz M (2024) Assessing image quality metric alignment with radiological evaluation in datasets with and without motion artifacts. In: Proceedings of 33rd annual meeting, international society for magnetic resonance in medicine, Singapore, p 3019
Knoll F, Murrell T, Sriram A, Yakubova N, Zbontar J, Rabbat M, Defazio A, Muckley MJ, Sodickson DK, Zitnick CL, Recht MP (2020) Advancing machine learning for MR image reconstruction with an open competition: overview of the 2019 fastMRI challenge. Magn Reson Med 84(6):3054–3070
Article PubMed PubMed Central Google Scholar
...Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck J-L, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F (2021) Results of the 2020 fastMRI challenge for machine learning MR image reconstruction. IEEE Trans Med Imaging 40(9):2306–2317
Article PubMed PubMed Central Google Scholar
Terpstra M, van den Berg C (2024) To ssim, or to not ssim: Investigating the impact of image artifacts and motion on image quality metrics. In: Proceedings of 33rd annual meeting, international society for magnetic resonance in medicine, Singapore, p. 1823
Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2018) The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, pp. 586–595
Adamson PM, Desai AD, Dominic J, Bluethgen C, Wood JP, Syed AB, Boutin RD, Stevens KJ, Vasanawala S, Pauly JM, Chaudhari AS (2023) Using deep feature distances for evaluating MR image reconstruction quality (NeurIPS 2023 workshop on deep learning and inverse problems. Submission 37.)
Miao J, Huo D, Wilson DL (2008) Quantitative image quality evaluation of MR images using perceptual difference models. Med Phys 35(6Part1):2541–2553
Article PubMed PubMed Central Google Scholar
Wang J, Di A, Haldar JP (2024) The “hidden noise’’ problem in MR image reconstruction. Magn Reson Med 92(3):982–996
Article CAS PubMed Google Scholar
Chow LS, Paramesran R (2016) Review of medical image quality assessment. Biomed Signal Process Control 27:145–154
Ganz M, EH (2022) Datasets with and without deliberate head movements for evaluating the performance of markerless prospective motion correction and selective reacquisition in a general clinical protocol for brain MRI. Web site: https://openneuro.org/datasets/ds004332/versions/1.0.0. Accessed October 2024
Marchetto E, Murphy K, Glimberg SL, Gallichan D (2023) Robust retrospective motion correction of head motion using navigator-based and markerless motion tracking techniques. Magn Reson Med 90(4):1297–1315
Article PubMed PubMed Central Google Scholar
McGee KP, Manduca A, Felmlee JP, Riederer SJ, Ehman RL (2000) Image metric-based correction (autocorrection) of motion effects: analysis of image metrics. J Magn Reson Imaging 11(2):174–181
Article CAS PubMed Google Scholar
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612
Hore A, Ziou D (2010) Image quality metrics: Psnr vs. ssim. 20th international conference on pattern recognition, 2366–2369
Zhang L, Zhang L, Mou X, Zhang D (2011) Fsim: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386
Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15(2):430–444
Kecskemeti S, Samsonov A, Velikina J, Field AS, Turski P, Rowley H, Lainhart JE, Alexander AL (2018) Robust motion correction strategy for structural MRI in unsedated children demonstrated with three-dimensional radial mpnrage. Radiology 289(2):509–516
Pannetier NA, Stavrinos T, Ng P, Herbst M, Zaitsev M, Young K, Matson G, Schuff N (2016) Quantitative framework for prospective motion correction evaluation. Magn Reson Med 75(2):810–816
Zaca D, Hasson U, Minati L, Jovicich J (2018) Method for retrospective estimation of natural head movement during structural MRI. J Magn Reson Imaging 48(4):927–937
Atkinson D, Hill DL, Stoyle PN, Summers PE, Keevil SF (1997) Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans Med Imaging 16(6):903–910
Article CAS PubMed Google Scholar
Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155
Article PubMed PubMed Central Google Scholar
Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841
Sullivan GM, Artino AR Jr (2013) Analyzing and interpreting data from likert-type scales. J Grad Med Educ 5(4):541–542
Article PubMed PubMed Central Google Scholar
Spearman C (1987) The proof and measurement of association between two things. Am J Psychol 100(3/4):441–471
Article CAS PubMed Google Scholar
Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appropriate use and interpretation. Anesthesia Analgesia 126(5):1763–1768
Bazin P-L, Nijsse HE, Zwaag W, Gallichan D, Alkemade A, Vos FM, Forstmann BU, Caan MW (2020) Sharpness in motion corrected quantitative imaging at 7t. Neuroimage 222:117227
Mortamet B, Bernstein MA, Jack CR Jr, Gunter JL, Ward C, Britson PJ, Meuli R, Thiran J-P, Krueger G (2009) Automatic quality assessment in structural brain magnetic resonance imaging. Magn Reson Med 62(2):365–372
Article PubMed PubMed Central Google Scholar
Pizarro RA, Cheng X, Barnett A, Lemaitre H, Verchinski BA, Goldman AL, Xiao E, Luo Q, Berman KF, Callicott JH et al (2016) Automated quality assessment of structural magnetic resonance brain images based on a supervised machine learning algorithm. Front Neuroinform 10:52
Article PubMed PubMed Central Google Scholar
Küstner T, Liebgott A, Mauch L, Martirosian P, Bamberg F, Nikolaou K, Yang B, Schick F, Gatidis S (2018) Automated reference-free detection of motion artifacts in magnetic resonance images. Magn Reson Mater Phys 31:243–256
Ecker V, Früh M, Yang B, Gatidis S, Küstner T (2024) Self-supervised contrastive learning for automatic image quality assessment in whole-body MRI: Preliminary results in UK biobank. In: Proceedings of 33rd annual meeting, international society for magnetic resonance in medicine, Singapore, p. 2653
Kovesi P (1999) Image features from phase congruency. Videre: J Comput Vis Res 1(3):1–26
Comments (0)