Liao Q, Zhang Y, He J, Huang K (2022) Global prevalence of myotonic dystrophy: an updated systematic review and meta-analysis. Neuroepidemiology 56:163–173
Turner C, Hilton-Jones D (2014) Myotonic dystrophy: diagnosis, management and new therapies. Curr Opin Neurol 27:599–606
Gargano MA, Matentzoglu N, Coleman B, Addo-Lartey EB, Anagnostopoulos AV, Anderton J, Avillach P, Bagley AM, Bakštein E, Balhoff JP, Baynam G, Bello SM, Berk M, Bertram H, Bishop S, Blau H, Bodenstein DF, Botas P, Boztug K, Čady J, Callahan TJ, Cameron R, Carbon SJ, Castellanos F, Caufield JH, Chan LE, Chute CG, Cruz-Rojo J, Dahan-Oliel N, Davids JR, De Dieuleveult M, De Souza V, de Vries BBA, De Vries E, DePaulo JR, Derfalvi B, Dhombres F, Diaz-Byrd C, Dingemans AJM, Donadille B, Duyzend M, Elfeky R, Essaid S, Fabrizzi C, Fico G, Firth HV, Freudenberg-Hua Y, Fullerton JM, Gabriel DL, Gilmour K, Giordano J, Goes FS, Moses RG, Green I, Griese M, Groza T, Gu W, Guthrie J, Gyori B, Hamosh A, Hanauer M, Hanušová K, He Y (Oliver), Hegde H, Helbig I, Holasová K, Hoyt CT, Huang S, Hurwitz E, Jacobsen JOB, Jiang X, Joseph L, Keramatian K, King B, Knoflach K, Koolen DA, Kraus ML, Kroll C, Kusters M, Ladewig MS, Lagorce D, Lai M-C, Lapunzina P, Laraway B, Lewis-Smith D, Li X, Lucano C, Majd M, Marazita ML, Martinez-Glez V, McHenry TH, McInnis MG, McMurry JA, Mihulová M, Millett CE, Mitchell PB, Moslerová V, Narutomi K, Nematollahi S, Nevado J, Nierenberg AA, Čajbiková NN, Nurnberger JI, Ogishima S, Olson D, Ortiz A, Pachajoa H, Perez de Nanclares G, Peters A, Putman T, Rapp CK, Rath A, Reese J, Rekerle L, Roberts AM, Roy S, Sanders SJ, Schuetz C, Schulte EC, Schulze TG, Schwarz M, Scott K, Seelow D, Seitz B, Shen Y, Similuk MN, Simon ES, Singh B, Smedley D, Smith CL, Smolinsky JT, Sperry S, Stafford E, Stefancsik R, Steinhaus R, Strawbridge R, Sundaramurthi JC, Talapova P, Tenorio Castano JA, Tesner P, Thomas RH, Thurm A, Turnovec M, van Gijn ME, Vasilevsky NA, Vlčková M, Walden A, Wang K, Wapner R, Ware JS, Wiafe AA, Wiafe SA, Wiggins LD, Williams AE, Wu C, Wyrwoll MJ, Xiong H, Yalin N, Yamamoto Y, Yatham LN, Yocum AK, Young AH, Yüksel Z, Zandi PP, Zankl A, Zarante I, Zvolský M, Toro S, Carmody LC, Harris NL, Munoz-Torres MC, Danis D, Mungall CJ, Köhler S, Haendel MA, Robinson PN (2024) The human phenotype ontology in 2024: phenotypes around the world. Nucleic Acids Res 52:D1333–D1346
Charlet-B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53
Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, Cannon SC, Thornton CA (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44
Fujino H, Saito T, Takahashi MP, Takada H, Nakayama T, Imura O, Matsumura T (2022) Quality of life and subjective symptom impact in Japanese patients with myotonic dystrophy type 1. BMC Neurol 22:55
CAS PubMed PubMed Central Google Scholar
Deligianni X, Klenk C, Place N, Garcia M, Pansini M, Hirschmann A, Schmidt-Trucksäss A, Bieri O, Santini F (2020) Dynamic MR imaging of the skeletal muscle in young and senior volunteers during synchronized minimal neuromuscular electrical stimulation. Magn Reson Mater Phys Biol Med 33:393–400
Deligianni X, Pansini M, Garcia M, Hirschmann A, Schmidt-Trucksäss A, Bieri O, Santini F (2017) Synchronous MRI of muscle motion induced by electrical stimulation. Magn Reson Med 77:664–672
Deligianni X, Santini F, Paoletti M, Solazzo F, Bergsland N, Savini G, Faggioli A, Germani G, Monforte M, Ricci E, Tasca G, Pichiecchio A (2022) Dynamic magnetic resonance imaging of muscle contraction in facioscapulohumeral muscular dystrophy. Sci Rep 12:7250
CAS PubMed PubMed Central Google Scholar
Sinha U, Sinha S (2024) Magnetic resonance imaging biomarkers of muscle. Tomography 10:1411–1438
PubMed PubMed Central Google Scholar
Santini F, Croce MG, Deligianni X, Paoletti M, Barzaghi L, Bergsland N, Faggioli A, Manco G, Bonizzoni C, Jin N, Ravaglia S, Pichiecchio A (2024) Dynamic MR of muscle contraction during electrical muscle stimulation as a potential diagnostic tool for neuromuscular disease.https://doi.org/10.1101/2024.09.17.24313673
Deligianni X, Hirschmann A, Place N, Bieri O, Santini F (2020) Dynamic MRI of plantar flexion: a comprehensive repeatability study of electrical stimulation-gated muscle contraction standardized on evoked force. PLoS ONE 15:e0241832
CAS PubMed PubMed Central Google Scholar
BIOPAC Systems, Inc. https://www.biopac.com/product/hand-clench-dynamom-for-mri/. Accessed 28 Oct 2024
Cambridge Research Systems. https://www.crsltd.com/tools-for-functional-imaging/mr-safe-response-devices/forp/8-button-and-other-response-devices-package/8-button-and-other-response-devices/grip-force-transducer/. Accessed 29 Oct 2024
Neuroimaging Solutions Measuring Movement in MRI. https://neuroimagingsolutions.com. Accessed 29 Oct 2024
Hidler J, Hodics T, Xu B, Dobkin B, Cohen LG (2006) MR compatible force sensing system for real-time monitoring of wrist moments during fMRI testing. J Neurosci Methods 155:300–307
PubMed PubMed Central Google Scholar
Su H, Iordachita II, Tokuda J, Hata N, Liu X, Seifabadi R, Xu S, Wood B, Fischer GS (2017) Fiber-optic force sensors for MRI-guided interventions and rehabilitation: a review. IEEE Sens J 17:1952–1963
CAS PubMed PubMed Central Google Scholar
Bützer TL, Rinderknecht MD, Johannes GH, Popp WL, Lehner R, Lambercy O, Gassert R (2016) Design and Evaluation of a Fiber-Optic Grip Force Sensor with Compliant 3D-Printable Structure for (f)MRI Applications. J Sens 2016:1–11
Arata J, Terakawa S, Fujimoto H, Sulzer J, Gassert R (2012) MRI-compatible grasping force sensor with an inclined double parallel structure using fiber optics. In: ASMEISCIE 2012 international symposium on flexible automation American Society of Mechanical Engineers, St. Louis, Missouri, USA, pp 77–82
Santini F, Bieri O, Deligianni X (2018) Openforce MR : a low-cost open-source MR-compatible force sensor. Concepts Magn Reson Part B Magn Reson Eng 48B:e21404
BAMMri/Open-Grip-Force. https://github.com/BAMMri/Open-Grip-Force. Accessed 6 Nov 2024
Torres C, Moxley RT, Griggs RC (1983) Quantitative testing of handgrip strength, myotonia, and fatigue in myotonic dystrophy. J Neurol Sci 60:157–168
Werle S, Goldhahn J, Drerup S, Simmen BR, Sprott H, Herren DB (2009) Age- and gender-specific normative data of grip and pinch strength in a healthy adult Swiss population. J Hand Surg Eur Vol 34:76–84
Arduino Documentation. https://docs.arduino.cc/hardware/uno-rev3/. Accessed 11 Jan 2024
Book of abstracts ESMRMB 2021 online 38th annual scientific meeting 7–9 October 2021. Magnetic Resonance materials in physics, biology and medicine (2021)
NEMA Standards Publication MS 1-2008 (R2014, R2020)
Barbieri M, Chaudhari AS, Moran CJ, Gold GE, Hargreaves BA, Kogan F (2023) A method for measuring B0 field inhomogeneity using quantitative double-echo in steady-state. Magn Reson Med 89:577–593
Haskell MW, Nielsen J, Noll DC (2023) Off-resonance artifact correction for MRI: a review. NMR Biomed 36:e4867
Weidensteiner C, Deligianni X, Haas T, Madoerin P, Bieri O, Garcia M, Romkes J, Rutz E, Santini F, Brunner R (2023) Cine phase contrast magnetic resonance imaging of calf muscle contraction in pediatric patients with cerebral palsy and healthy children: comparison of voluntary motion and electrically evoked motion. https://doi.org/10.1101/2023.08.02.23293313
Irwin CB, Towles JD, Radwin RG (2013) Development and application of a multi-axis dynamometer for measuring grip force. Ergonomics 56:1841–1849
Corcos DM, Gottlieb GL, Latash ML, Almeida GL, Agarwal GC (1992) Electromechanical delay: an experimental artifact. J Electromyogr Kinesiol 2:59–68
Downey RJ, Merad M, Gonzalez EJ, Dixon WE (2017) The time-varying nature of electromechanical delay and muscle control effectiveness in response to stimulation-induced fatigue. IEEE Trans Neural Syst Rehabil Eng 25:1397–1408
Jeon W, Griffin L (2018) Effects of pulse duration on muscle fatigue during electrical stimulation inducing moderate-level contraction. Muscle Nerve 57:642–649
Grosprêtre S, Gueugneau N, Martin A, Lepers R (2017) Central contribution to electrically induced fatigue depends on stimulation frequency. Med Sci Sports Exerc 49:1530–1540
Flodin J, Mikkelsen C, Ackermann PW (2022) Knee extensor force production and discomfort during neuromuscular electrical stimulation of quadriceps with and without gluteal muscle co-stimulation. Eur J Appl Physiol 122:1521–1530 Crameri F (2023) Scientific colour maps. https://doi.org/10.5281/ZENODO.1243862
CAS PubMed PubMed Central Google Scholar
Crameri F (2023) Scientific colour maps. https://doi.org/10.5281/ZENODO.1243862
Comments (0)