Bastiaens M, Hoefnagel J, Westendorp R, Vermeer BJ, Bouwes Bavinck JN (2004) Solar lentigines are strongly related to sun exposure in contrast to ephelides. Pigment Cell Res 17(3):225–229. https://doi.org/10.1111/j.1600-0749.2004.00131.x
Reguiaï Z, Jovenin N, Bernard P, Derancourt C (2008) Melanoma, past severe sunburns and multiple solar lentigines of the upper back and shoulders. Dermatology 216(4):330–336. https://doi.org/10.1159/000114207
Chan HH, Alam M, Kono T, Dover JS (2002) Clinical application of lasers in Asians. Dermatol Surg 28:556–563
Negishi K, Tanaka S, Tobita S (2016) Prospective, randomized, evaluator-blinded study of the long pulse 532-nm KTP laser alone or in combination with the long pulse 1064-nm nd: YAG laser on facial rejuvenation in Asian skin. Lasers Surg Med 48:844–851
Negishi K, Tezuka Y, Kushikata N, Wakamatsu S (2001) Photo-rejuvenation for Asian skin by intense pulsed light. Dermatol Surg 27:627–631
Kawada A, Shiraishi H, Asai M et al (2002) Clinical improvement of solar lentigines and ephelides with an intense pulsed light source. Dermatol Surg 28:504–508
Vachiramon V, Panmanee W, Techapichetvanich T, Chanprapaph K (2016) Comparison of Q-switched nd: YAG laser and fractional carbon dioxide laser for the treatment of solar lentigines in Asians. Lasers Surg Med 48:354–359
Tanaka Y, Tsunemi Y, Kawashima M (2016) Objective assessment of intensive targeted treatment for solar lentigines using intense pulsed light with wavelengths between 500 and 635nm. Lasers Surg Med 48:30–35
Ho SG, Chan NY, Yeung CK, Shek SY, Kono T, Chan HH (2012) A retrospective analysis of the management of the freckles and lentigines using four different pigment lasers on Asian skin. J Cosmet Laser Ther 14:74–80
Article CAS PubMed Google Scholar
Anderson RR, Margolis RJ, Watanabe S, Flotte T, Hruza GJ, Dover JS (1989) Selective photothermolysis of cutaneous pigmentation by Q-switched nd:yag laser pulses at 1064, 532, and 355nm. J Invest Dermatol 93:28–32
Article CAS PubMed Google Scholar
Negishi K, Akita H, Tanaka S, Yokoyama Y, Wakamatsu S, Matsunaga K (2013) Comparative study of treatment efficacy and the incidence of post-inflammatory hyperpigmentation with different degrees of irradiation using two different qualityswitched lasers for removing solar lentigines on Asian skin. J Eur Acad Dermatol Venereol 27:307–312
Article CAS PubMed Google Scholar
Kim JK, Nam CH, Kim JY, Gye JW, Hong SO, Kim MH, Park BC (2015) Objective evaluation of the effect of Q-switched nd:yag (532nm) laser on solar Lentigo by using a colorimeter. Ann Dermatol 27:326–328
Article PubMed PubMed Central Google Scholar
Kang HJ, Na JI, Lee JH, Roh MR, Ko JY, Chang SE (2017) Postinflammatory hyperpigmentation associated with treatment of solar lentigines using a Q-Switched 532-nm nd: YAG laser: a multicenter survey. J Dermatolog Treat 28:447–451
Kono T, Manstein D, Chan HH, Nozaki M, Anderson RR (2006) Q-switched Ruby versus long-pulsed dye laser delivered with compression for treatment of facial lentigines in Asians. Lasers Surg Med 38:94–97
Wang CC, Sue YM, Yang CH, Chen CK (2006) A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: a randomized, physician-blinded, split-face comparative trial. J Am Acad Dermatol 54:804–810
Ho SG, Yeung CK, Chan NP, Shek SY, Chan HH (2011) A comparison of Q-switched and long-pulsed alexandrite laser for the treatment of freckles and lentigines in Oriental patients. Lasers Surg Med 43:108–113
Article CAS PubMed Google Scholar
Ross V, Naseef G, Levi A et al (1998) Comparison of responses of tattoos to picosecond and nanosecond Q-switched neodymium:yag laser. Arch Dermatol 134:167–171
Article CAS PubMed Google Scholar
Reiter O, Atzmony L, Akerman L, Kershenovich R, Lapidoth M, Mimouni D (2016) Picosecond lasers for tattoo removal: a systematic review. Lasers Med Sci 31:1397–1405
Chan J, Shek SY, Kono T, Yeung CK, Chan HH (2016) A retrospective analysis on the management of pigmented lesions using a picosecond 755-nm alexandrite laser in Asians. Lasers Surg Med 48:23–29
Ohshiro T, Ohshiro T, Sasaki K, Kishi K (2016) Picosecond pulse duration laser treatment for dermal melanocytosis in asians: a retrospective review. Laser Ther 25:99–104
Article PubMed PubMed Central Google Scholar
Levin MK, Ng E, Bae YS, Brauer JA, Geronemus RG (2016) Treatment of pigmentary disorders in patients with skin of color with a novel 755nm picosecond, Q-switched ruby, and Q-switched nd:yag nanosecond lasers: a retrospective photographic review. Lasers Surg Med 48:181–187
Guss L, Goldman MP, Wu DC (2017) Picosecond 532-nm neodymium-dopped yttrium alminium Garnet laser for the treatment of solar lentigines in darker skin types: safety and efficacy. Dermatol Surg 43:456–459
Article CAS PubMed Google Scholar
Dierickx C (2018) Using normal and high pulse coverage with picosecond laser treatment of wrinkles and acne scarring: long term clinical observations. Lasers Surg Med 50:51–55
Bernstein EF, Schomacker KT, Basilavecchio LD, Plugis JM, Bhawalkar JD (2017) Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter. Lasers Surg Med 49:796–802
Article PubMed PubMed Central Google Scholar
Weiss RA, McDaniel DH, Weiss MA, Mahoney AM, Beasley KL, Halvorson CR (2017) Safety and efficacy of a novel diffractive lens array using a picosecond 755nm alexandrite laser for treatment of wrinkles. Lasers Surg Med 49(1):40–44
Lu Z, Chen J, Wang X et al (2003) Effect of Q-switched alexandrite laser irradiation on epidermal melanocytes in treatment of nevus of Ota. Chin Med J (Engl) 116(4):597–601
Comments (0)