A step-by-step approach to minimally photothrombotic ischemic stroke in the hippocampal region that simulates human stroke

Moshayedi P, Carmichael ST (2013) Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke. Biomatter 3(1):e23863

PubMed  PubMed Central  Google Scholar 

Wang J et al (2014) Ischemic stroke and repair: current trends in research and tissue engineering treatments. Regenerative Med Res 2:1–10

Google Scholar 

Azarpazhooh MR et al (2010) Excessive incidence of stroke in Iran: evidence from the Mashhad Stroke Incidence Study (MSIS), a population-based study of stroke in the Middle East. Stroke 41(1):e3–e10

PubMed  Google Scholar 

Ghuman H, Modo M (2016) Biomaterial applications in neural therapy and repair. Chinese Neurosurgical Journal 2:1–8

Google Scholar 

Sacco RL (1997) Risk factors, outcomes, and stroke subtypes for ischemic stroke. Neurology 49((5_suppl_4)):S39–S44

CAS  PubMed  Google Scholar 

Feigin VL et al (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2(1):43–53

PubMed  Google Scholar 

Bernstock JD et al (2017) Neural stem cell transplantation in ischemic stroke: a role for preconditioning and cellular engineering. J Cereb Blood Flow Metab 37(7):2314–2319

PubMed  PubMed Central  Google Scholar 

Chen X et al (2018) Combination therapy with low-dose IVIG and a C1-esterase inhibitor ameliorates brain damage and functional deficits in experimental ischemic stroke. NeuroMol Med 20:63–72

CAS  Google Scholar 

Barth AM, Mody I (2011) Changes in hippocampal neuronal activity during and after unilateral selective hippocampal ischemia in vivo. J Neurosci 31(3):851–860

CAS  PubMed  PubMed Central  Google Scholar 

Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80(4):844–866

CAS  PubMed  Google Scholar 

Kokaia Z, Darsalia V (2011) Neural stem cell-based therapy for ischemic stroke. Transl Stroke Res 2:272–278

PubMed  Google Scholar 

Rauramaa T et al (2011) Cardiovascular diseases and hippocampal infarcts. Hippocampus 21(3):281–287

PubMed  Google Scholar 

Evonuk KS et al (2017) Myocardial ischemia/reperfusion impairs neurogenesis and hippocampal-dependent learning and memory. Brain Behav Immun 61:266–273

PubMed  Google Scholar 

McCabe C et al (2018) Animal models of ischaemic stroke and characterisation of the ischaemic penumbra. Neuropharmacology 134:169–177

CAS  PubMed  Google Scholar 

Kumar A, Gupta V (2016) A review on animal models of stroke: an update. Brain Res Bull 122:35–44

PubMed  Google Scholar 

Drieu A et al (2020) Immune responses and anti-inflammatory strategies in a clinically relevant model of thromboembolic ischemic stroke with reperfusion. Transl Stroke Res 11:481–495

CAS  PubMed  Google Scholar 

Li H et al (2013) Inhibition of the group I mGluRs reduces acute brain damage and improves long-term histological outcomes after photothrombosis-induced ischaemia. ASN Neuro 5(3):AN20130002

Google Scholar 

Gorlamandala N et al (2018) Focal ischaemic infarcts expand faster in cerebellar cortex than cerebral cortex in a mouse photothrombotic stroke model. Transl Stroke Res 9(6):643–653

PubMed  Google Scholar 

Svoboda J (2015) Model mozkové fokální korové ischémie a jeho parametrizace

Shah AM et al (2017) Optogenetic neuronal stimulation of the lateral cerebellar nucleus promotes persistent functional recovery after stroke. Sci Rep 7(1):46612

CAS  PubMed  PubMed Central  Google Scholar 

LunardiBaccetto S, Lehmann C (2019) Microcirculatory changes in experimental models of stroke and CNS-injury induced immunodepression. Int J Mol Sci 20(20):5184

Google Scholar 

Labat-Gest V, Tomasi S (2013) Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Visualized Exp: JoVE 76:50370

Google Scholar 

Watson BD et al (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Annals Neurol: Off J American Neurol Assoc Child Neurol Soc 17(5):497–504

CAS  Google Scholar 

Hua F et al (2009) Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice. Brain Res 1262:100–108

CAS  PubMed  PubMed Central  Google Scholar 

Shabani Z et al (2023) Cellular, histological, and behavioral pathological alterations associated with the mouse model of photothrombotic ischemic stroke. J Chem Neuroanat 130:102261

CAS  PubMed  Google Scholar 

Ji Y-B et al (2017) TFP5 peptide, derived from CDK5-activating cofactor p35, provides neuroprotection in early-stage of adult ischemic stroke. Sci Rep 7(1):40013

CAS  PubMed  PubMed Central  Google Scholar 

Shahi M et al (2021) Exact location of sensorimotor cortex injury after photochemical modulation; evidence of stroke based on stereological and morphometric studies in mice. Lasers Med Sci 36:91–98

PubMed  Google Scholar 

Rahimi A et al (2015) Interaction between the protective effects of cannabidiol and palmitoylethanolamide in experimental model of multiple sclerosis in C57BL/6 mice. Neuroscience 290:279–287

CAS  PubMed  Google Scholar 

Bahlakeh G, Jahanshahi M, Saeidi M (2018) Human chorionic gonadotropin decreases the phosphorylated tau protein level in streptozotocin-Alzheimeric male rats’ hippocampus. Folia Neuropathol 56(2):141–150

PubMed  Google Scholar 

Hijroudi F et al (2022) Neural stem cells secretome increased neurogenesis and behavioral performance and the activation of Wnt/β-catenin signaling pathway in mouse model of Alzheimer’s disease. NeuroMol Med 24(4):424–436

CAS  Google Scholar 

Karimipour M et al (2019) Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. Int J Dev Neurosci 74:18–26

CAS  PubMed  Google Scholar 

Bahlakeh G et al (2022) Neurotrophic factor-secreting cells restored endogenous hippocampal neurogenesis through the Wnt/β-catenin signaling pathway in AD model mice. Stem Cell Res Ther 13(1):343

CAS  PubMed  PubMed Central  Google Scholar 

Sadigh-Eteghad S et al (2015) Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25–35-mediated cognitive deficits in mice. Neuroscience 298:81–93

CAS  PubMed  Google Scholar 

Wang T et al (2010) Controlling the volume of the focal cerebral ischemic lesion through photothrombosis. Am J Biomed Sci 2:33–42

Google Scholar 

Schmidt A et al (2012) Photochemically induced ischemic stroke in rats. Exp Translational Stroke Med 4:1–4

Google Scholar 

Bix GJ, Gowing EK, Clarkson AN (2013) Perlecan domain V is neuroprotective and affords functional improvement in a photothrombotic stroke model in young and aged mice. Transl Stroke Res 4:515–523

CAS  PubMed  PubMed Central  Google Scholar 

Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2(3):396–409

PubMed  PubMed Central  Google Scholar 

Dorr A, Sled JG, Kabani N (2007) Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. Neuroimage 35(4):1409–1423

CAS  PubMed  Google Scholar 

Mello MTD, Silva NPM (1955) The use of triphenyltetrazolium chloride in the study of dehydrogenase activity of Brucellae. Mem Inst Oswaldo Cruz 53:45–58

PubMed  Google Scholar 

Panzarini E, Inguscio V, Dini L (2011) Overview of Cell Death Mechanisms Induced by Rose Bengal Acetate-Photodynamic Therapy. Int J Photoenergy 2011(1):713726

Google Scholar 

Inamo J, Belougne E, Doutremepuich C (1996) Importance of photo activation of rose bengal for platelet activation in experimental models of photochemically induced thrombosis. Thromb Res 83(3):229–235

CAS  PubMed  Google Scholar 

Chaby LE et al (2015) Does chronic unpredictable stress during adolescence affect spatial cognition in adulthood? PLoS ONE 10(11):e0141908

PubMed  PubMed Central  Google Scholar 

Nategh M et al (2016) Inactivation of nucleus incertus impairs passive avoidance learning and long term potentiation of the population spike in the perforant path-dentate gyrus evoked field potentials in rats. Neurobiol Learn Mem 130:185–193

PubMed  Google Scholar 

Comments (0)

No login
gif