Automated scheme of plaque classification based on segmentation in carotid ultrasound images using transformer approach

Connie WT, Aaron WA, Zaid IA, et al. Heart disease and stroke statistics—2023 update: a report from the American heart association. Circulation. 2023;147:93–621.

Google Scholar 

Kadota A, Miura K, Okamura T, et al. Carotid intima-media thickness and plaque in apparently healthy Japanese individuals with an estimated 10-year absolute risk of CAD death according to the Japan atherosclerosis society (JAS) guidelines 2012: the Shiga epidemiological study of subclinical atherosclerosis (SESSA). J Atheroscler Thromb. 2013;20:755–66.

PubMed  Google Scholar 

Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.

CAS  PubMed  Google Scholar 

Kitamura A, Iso H, Imano H, et al. Carotid intima-media thickness and plaque characteristics as a risk factor for stroke in Japanese elderly men. Stroke. 2004;35:2788–94.

PubMed  Google Scholar 

Mathiesen EB, Bønaa KH, Joakimsen O. Echolucent plaques are associated with high risk of ischemic cerebrovascular events in carotid stenosis: the tromsø study. Circulation. 2001;103:2171–5.

CAS  PubMed  Google Scholar 

Gronholdt MM. Ultrasound and lipoproteins as predictors of lipid-rich, rupture-prone plaques in the carotid artery. Arterioscler Thromb Vasc Biol. 1999;19:2–13.

CAS  PubMed  Google Scholar 

Saam T, Hatsukami TS, Takaya N, et al. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology. 2007;244:64–77.

PubMed  Google Scholar 

Doi K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput Med Imaging Graph. 2007;31:198–211.

PubMed  PubMed Central  Google Scholar 

Fujita H. AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol. 2020;13:6–19.

PubMed  Google Scholar 

LeCun Y, Haffner P, Bottouet L, et al (1999) Object recognition with gradient-based learning. In: Shape, Contour and Grouping in Computer Vision. 319–45

Kondo T, Teramoto A, Watanabe E, et al. Prediction of short-term mortality of cardiac care unit patients using image-transformed ECG waveforms. IEEE J Transl Eng Health Med. 2023;11:191–8.

PubMed  Google Scholar 

Suganuma Y, Teramoto A, Saito K, et al. Hybrid multiple-organ segmentation method using multiple U-Nets in PET/CT images. Appl Sci. 2023;13:10765.

CAS  Google Scholar 

Toda R, Teramoto A, Kondo M, et al. Lung cancer CT image generation from a free-form sketch using style-based pix2pix for data augmentation. Sci Rep. 2022;12:12867.

CAS  PubMed  PubMed Central  Google Scholar 

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Adv Neural Inf Process. 2017;30:6000–6010.

Google Scholar 

Huang Q, Tian H, Jia L, et al. A review of deep learning segmentation methods for carotid artery ultrasound images. Neurocomputing. 2023;545:126298.

Google Scholar 

Xie M, Li Y, Xue Y, et al (2020) Two-stage and dual-decoder convolutional U-Net ensembles for reliable vessel and plaque segmentation in carotid ultrasound images. ICMLA 1376–81.

Meshram NH, Mitchell CC, Wilbrand SM, et al. Deep learning for carotid plaque segmentation using a dilated U-Net architecture. Ultrason Imaging. 2020;42:221–30.

PubMed  PubMed Central  Google Scholar 

Jain PK, Sharma N, Giannopoulos AA, et al. Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound. Comput Biol Med. 2021;136: 104721.

CAS  PubMed  Google Scholar 

Jain PK, Sharma N, Kalra MK, et al. Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: an unseen artificial intelligence paradigm for stroke risk assessment. Comput Biol Med. 2022;149: 106017.

PubMed  Google Scholar 

Yuan YC, Li C, Zhang K, et al. HRU-Net: a transfer learning method for carotid artery plaque segmentation in ultrasound images. Diagnostics. 2022;12:2852.

PubMed  PubMed Central  Google Scholar 

Lin Y, Huang J, Xu W, et al. Method for carotid artery 3-D ultrasound image segmentation based on CSWin transformer. Ultrasound Med Biol. 2023;49:645–56.

PubMed  Google Scholar 

Christodoulou CI, Pattichis CS, Pantziaris M, et al. Texture-based classification of atherosclerotic carotid plaques. IEEE Trans Med Imaging. 2003;22:902–12.

CAS  PubMed  Google Scholar 

Kyriacou E, Pattichis MS, Pattichis CS, et al. Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images. Appl Intell. 2009;30:3–23.

Google Scholar 

Acharya UR, Krishnan MMR, Sree SV, et al. Plaque tissue characterization and classification in ultrasound carotid scans: a paradigm for vascular feature amalgamation. IEEE Trans Instrum Meas. 2012;62:392–400.

Google Scholar 

Lekadir K, Galimzianova A, Betriu A, et al. A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J Biomed Health Inform. 2016;21:48–55.

PubMed  PubMed Central  Google Scholar 

Gan H, Zhou R, Ou Y, et al. A multi-task learning framework for carotid plaque segmentation and classification from ultrasound images. arXiv. 2023;2307:00583.

Google Scholar 

Chen J, Lu Y, Yu Q, et al. TransUNet: transformers make strong encoders for medical image segmentation. arXiv. 2021;2102:04306.

Google Scholar 

Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv. 2020;2010:11929.

Google Scholar 

Ronneberger O, Fischer P (2015) Brox T: U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI. 234–41

Huang G, Liu S, Maaten L, et al (2017) Densely connected convolutional networks. Proc. IEEE Comput Soc Conf Comput Vis Pattern Recognit. 4700–8

Deng J, Dong W, Socher R, et al (2009) ImageNet: A large-scale hierarchical image database. Comput Vis Pattern Recognit. 248–55.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv. 2014;1409:1556.

Google Scholar 

He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. Proc. IEEE Comput Soc Conf Comput Vis Pattern Recognit. 770–8.

Szegedy C, Vanhoucke V, Ioffe S, et al (2016) Rethinking the inception architecture for computer vision. Proc. IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2818–26

Taghanaki SA, Zheng Y, Zhou SK, et al. Combo Loss: handling input and output imbalance in multi-organ segmentation. Comput Med Imaging Graph. 2019;75:24–33.

PubMed  Google Scholar 

DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing areas under two or more correlated receiver operating characteristics curves: a nonparametric approach. Biometrics. 1988;44:837–45.

CAS  PubMed  Google Scholar 

Molinari F, Krishnamurthi G, Acharya UR, et al. Hypothesis validation of far-wall brightness in carotid-artery ultrasound for feature-based IMT measurement using a combination of level-set segmentation and registration. IEEE Trans Instrum Meas. 2012;61:1054–63.

Google Scholar 

Jain PK, Sharma N, Saba L, et al. Automated deep learning-based paradigm for high-risk plaque detection in B-mode common carotid ultrasound scans: an asymptomatic Japanese cohort study. Int Angiol. 2021;41:9–23.

PubMed  Google Scholar 

Comments (0)

No login
gif