Connie WT, Aaron WA, Zaid IA, et al. Heart disease and stroke statistics—2023 update: a report from the American heart association. Circulation. 2023;147:93–621.
Kadota A, Miura K, Okamura T, et al. Carotid intima-media thickness and plaque in apparently healthy Japanese individuals with an estimated 10-year absolute risk of CAD death according to the Japan atherosclerosis society (JAS) guidelines 2012: the Shiga epidemiological study of subclinical atherosclerosis (SESSA). J Atheroscler Thromb. 2013;20:755–66.
Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.
Kitamura A, Iso H, Imano H, et al. Carotid intima-media thickness and plaque characteristics as a risk factor for stroke in Japanese elderly men. Stroke. 2004;35:2788–94.
Mathiesen EB, Bønaa KH, Joakimsen O. Echolucent plaques are associated with high risk of ischemic cerebrovascular events in carotid stenosis: the tromsø study. Circulation. 2001;103:2171–5.
Gronholdt MM. Ultrasound and lipoproteins as predictors of lipid-rich, rupture-prone plaques in the carotid artery. Arterioscler Thromb Vasc Biol. 1999;19:2–13.
Saam T, Hatsukami TS, Takaya N, et al. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology. 2007;244:64–77.
Doi K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput Med Imaging Graph. 2007;31:198–211.
PubMed PubMed Central Google Scholar
Fujita H. AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol. 2020;13:6–19.
LeCun Y, Haffner P, Bottouet L, et al (1999) Object recognition with gradient-based learning. In: Shape, Contour and Grouping in Computer Vision. 319–45
Kondo T, Teramoto A, Watanabe E, et al. Prediction of short-term mortality of cardiac care unit patients using image-transformed ECG waveforms. IEEE J Transl Eng Health Med. 2023;11:191–8.
Suganuma Y, Teramoto A, Saito K, et al. Hybrid multiple-organ segmentation method using multiple U-Nets in PET/CT images. Appl Sci. 2023;13:10765.
Toda R, Teramoto A, Kondo M, et al. Lung cancer CT image generation from a free-form sketch using style-based pix2pix for data augmentation. Sci Rep. 2022;12:12867.
CAS PubMed PubMed Central Google Scholar
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Adv Neural Inf Process. 2017;30:6000–6010.
Huang Q, Tian H, Jia L, et al. A review of deep learning segmentation methods for carotid artery ultrasound images. Neurocomputing. 2023;545:126298.
Xie M, Li Y, Xue Y, et al (2020) Two-stage and dual-decoder convolutional U-Net ensembles for reliable vessel and plaque segmentation in carotid ultrasound images. ICMLA 1376–81.
Meshram NH, Mitchell CC, Wilbrand SM, et al. Deep learning for carotid plaque segmentation using a dilated U-Net architecture. Ultrason Imaging. 2020;42:221–30.
PubMed PubMed Central Google Scholar
Jain PK, Sharma N, Giannopoulos AA, et al. Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound. Comput Biol Med. 2021;136: 104721.
Jain PK, Sharma N, Kalra MK, et al. Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: an unseen artificial intelligence paradigm for stroke risk assessment. Comput Biol Med. 2022;149: 106017.
Yuan YC, Li C, Zhang K, et al. HRU-Net: a transfer learning method for carotid artery plaque segmentation in ultrasound images. Diagnostics. 2022;12:2852.
PubMed PubMed Central Google Scholar
Lin Y, Huang J, Xu W, et al. Method for carotid artery 3-D ultrasound image segmentation based on CSWin transformer. Ultrasound Med Biol. 2023;49:645–56.
Christodoulou CI, Pattichis CS, Pantziaris M, et al. Texture-based classification of atherosclerotic carotid plaques. IEEE Trans Med Imaging. 2003;22:902–12.
Kyriacou E, Pattichis MS, Pattichis CS, et al. Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images. Appl Intell. 2009;30:3–23.
Acharya UR, Krishnan MMR, Sree SV, et al. Plaque tissue characterization and classification in ultrasound carotid scans: a paradigm for vascular feature amalgamation. IEEE Trans Instrum Meas. 2012;62:392–400.
Lekadir K, Galimzianova A, Betriu A, et al. A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J Biomed Health Inform. 2016;21:48–55.
PubMed PubMed Central Google Scholar
Gan H, Zhou R, Ou Y, et al. A multi-task learning framework for carotid plaque segmentation and classification from ultrasound images. arXiv. 2023;2307:00583.
Chen J, Lu Y, Yu Q, et al. TransUNet: transformers make strong encoders for medical image segmentation. arXiv. 2021;2102:04306.
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv. 2020;2010:11929.
Ronneberger O, Fischer P (2015) Brox T: U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI. 234–41
Huang G, Liu S, Maaten L, et al (2017) Densely connected convolutional networks. Proc. IEEE Comput Soc Conf Comput Vis Pattern Recognit. 4700–8
Deng J, Dong W, Socher R, et al (2009) ImageNet: A large-scale hierarchical image database. Comput Vis Pattern Recognit. 248–55.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv. 2014;1409:1556.
He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. Proc. IEEE Comput Soc Conf Comput Vis Pattern Recognit. 770–8.
Szegedy C, Vanhoucke V, Ioffe S, et al (2016) Rethinking the inception architecture for computer vision. Proc. IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2818–26
Taghanaki SA, Zheng Y, Zhou SK, et al. Combo Loss: handling input and output imbalance in multi-organ segmentation. Comput Med Imaging Graph. 2019;75:24–33.
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing areas under two or more correlated receiver operating characteristics curves: a nonparametric approach. Biometrics. 1988;44:837–45.
Molinari F, Krishnamurthi G, Acharya UR, et al. Hypothesis validation of far-wall brightness in carotid-artery ultrasound for feature-based IMT measurement using a combination of level-set segmentation and registration. IEEE Trans Instrum Meas. 2012;61:1054–63.
Jain PK, Sharma N, Saba L, et al. Automated deep learning-based paradigm for high-risk plaque detection in B-mode common carotid ultrasound scans: an asymptomatic Japanese cohort study. Int Angiol. 2021;41:9–23.
Comments (0)