Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y, et al. Vascularized and complex organ buds from diverse tissues via mesenchymal Cell-Driven condensation. Cell Stem Cell. 2015;16(5):556–65.
Shyer AE, Rodrigues AR, Schroeder GG, Kassianidou E, Kumar S, Harland RM. Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin. Science. 2017;357(6353):811–5.
CAS PubMed PubMed Central Google Scholar
Giffin JL, Gaitor D, Franz-Odendaal TA. The forgotten skeletogenic condensations: A comparison of early skeletal development amongst vertebrates. J Dev Biol. 2019;7(1).
Mammoto T, Mammoto A, Torisawa YS, Tat T, Gibbs A, Derda R, et al. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev Cell. 2011;21(4):758–69.
CAS PubMed PubMed Central Google Scholar
Hall BK, Miyake T. Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int J Dev Biol. 1995;39(6):881–93.
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev. 2023;103(3):1899–964.
Yang S, Palmquist KH, Nathan L, Pfeifer CR, Schultheiss PJ, Sharma A, et al. Morphogens enable interacting supracellular phases that generate organ architecture. Science. 2023;382(6673):eadg5579.
Jing J, Feng J, Yuan Y, Guo T, Lei J, Pei F, et al. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nat Commun. 2022;13(1):4803.
CAS PubMed PubMed Central Google Scholar
Mammoto T, Ingber DE. Mechanical control of tissue and organ development. Development. 2010;137(9):1407–20.
CAS PubMed PubMed Central Google Scholar
Mercker M, Hartmann D, Marciniak-Czochra A. A mechanochemical model for embryonic pattern formation: coupling tissue mechanics and morphogen expression. PLoS ONE. 2013;8(12):e82617.
PubMed PubMed Central Google Scholar
Villeneuve C, Hashmi A, Ylivinkka I, Lawson-Keister E, Miroshnikova YA, Perez-Gonzalez C, et al. Mechanical forces across compartments coordinate cell shape and fate transitions to generate tissue architecture. Nat Cell Biol. 2024;26(2):207–18.
CAS PubMed PubMed Central Google Scholar
Khatib NS, Monsen J, Ahmed S, Huang Y, Hoey DA, Nowlan NC. Mechanoregulatory role of TRPV4 in prenatal skeletal development. Sci Adv. 2023;9(4):eade2155.
CAS PubMed PubMed Central Google Scholar
Yang S, Huang F, Zhang F, Sheng X, Fan W, Dissanayaka WL. Emerging roles of YAP/TAZ in tooth and surrounding: from development to regeneration. Stem Cell Rev Rep. 2023;19(6):1659–75.
Lappalainen P, Kotila T, Jegou A, Romet-Lemonne G. Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol. 2022;23(12):836–52.
Roh-Johnson M, Shemer G, Higgins CD, McClellan JH, Werts AD, Tulu US, et al. Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science. 2012;335(6073):1232–5.
CAS PubMed PubMed Central Google Scholar
Seetharaman S, Etienne-Manneville S. Cytoskeletal crosstalk in cell migration. Trends Cell Biol. 2020;30(9):720–35.
Sakamoto R, Murrell MP. F-actin architecture determines the conversion of chemical energy into mechanical work. Nat Commun. 2024;15(1):3444.
CAS PubMed PubMed Central Google Scholar
Li TD, Bieling P, Weichsel J, Mullins RD, Fletcher DA. The molecular mechanism of load adaptation by branched actin networks. Elife. 2022;11.
Clarke DN, Martin AC. Actin-based force generation and cell adhesion in tissue morphogenesis. Curr Biol. 2021;31(10):R667–80.
CAS PubMed PubMed Central Google Scholar
Wang J. Perspectives on the landscape and flux theory for describing emergent behaviors of the biological systems. J Biol Phys. 2022;48(1):1–36.
Gao G, Li X, Jiang Z, Osorio L, Tang YL, Yu X, et al. Isthmin-1 (Ism1) modulates renal branching morphogenesis and mesenchyme condensation during early kidney development. Nat Commun. 2023;14(1):2378.
CAS PubMed PubMed Central Google Scholar
Liu S. Mesenchymal stem cell engineering. Methods Mol Biol. 2024;2766:169–74.
Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24(7):495–516.
CAS PubMed PubMed Central Google Scholar
Huang D, Li Y, Ma Z, Lin H, Zhu X, Xiao Y, et al. Collagen hydrogel viscoelasticity regulates MSC chondrogenesis in a ROCK-dependent manner. Sci Adv. 2023;9(6):eade9497.
CAS PubMed PubMed Central Google Scholar
Li Y, Zhong Z, Xu C, Wu X, Li J, Tao W, et al. 3D micropattern force triggers YAP nuclear entry by transport across nuclear pores and modulates stem cells paracrine. Natl Sci Rev. 2023;10(8):nwad165.
CAS PubMed PubMed Central Google Scholar
Sart S, Tsai AC, Li Y, Ma T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue Eng Part B Rev. 2014;20(5):365–80.
Zimmermann B. Assembly and disassembly of gap junctions during mesenchymal cell condensation and early chondrogenesis in limb buds of mouse embryos. J Anat. 1984;138(Pt 2):351–63.
PubMed PubMed Central Google Scholar
Glimm T, Zhang J, Shen Y-Q, Newman SA. Reaction–Diffusion systems and external morphogen gradients: the Two-Dimensional case, with an application to skeletal pattern formation. Bull Math Biol. 2011;74(3):666–87.
Barna M, Niswander L. Visualization of cartilage formation: insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes. Dev Cell. 2007;12(6):931–41.
Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, et al. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science. 2012;338(6113):1476–80.
CAS PubMed PubMed Central Google Scholar
Bhat R, Lerea KM, Peng H, Kaltner H, Gabius HJ, Newman SA. A regulatory network of two galectins mediates the earliest steps of avian limb skeletal morphogenesis. BMC Dev Biol. 2011;11:6.
CAS PubMed PubMed Central Google Scholar
Newman SA, Bhat R. Activator-inhibitor dynamics of vertebrate limb pattern formation. Birth Defects Res C Embryo Today. 2007;81(4):305–19.
Glimm T, Kazmierczak B, Newman SA, Bhat R. A two-galectin network establishes mesenchymal condensation phenotype in limb development. Math Biosci. 2023;365:109054.
Hall BK, Miyake T. All for one and one for all: condensations and the initiation of skeletal development. BioEssays. 2000;22(2):138–47.
Vainio S, Thesleff I. Sequential induction of syndecan, Tenascin and cell proliferation associated with mesenchymal cell condensation during early tooth development. Differentiation. 1992;50(2):97–105.
Tomasek JJ, Mazurkiewicz JE, Newman SA. Nonuniform distribution of fibronectin during avian limb development. Dev Biol. 1982;90(1):118–26.
Dessau W, von der Mark H, von der Mark K, Fischer S. Changes in the patterns of collagens and fibronectin during limb-bud chondrogenesis. J Embryol Exp Morphol. 1980;57:51–60.
Krivanek J, Soldatov RA, Kastriti ME, Chontorotzea T, Herdina AN, Petersen J, et al. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun. 2020;11(1):4816.
Comments (0)