Chen Z, Zhao P, Li F, et al. iFeature: a python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics. 2018;34(14):2499–502.
Daniel V, et al. Deep learning improves antimicrobial peptide recognition. Bioinformatics. 2018;34(16):2740–7.
Xiao X, Wang P, Lin WZ, et al. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem. 2013;436(2):168–77.
Meher PK, Sahu TK, Saini V, et al. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep. 2017;7(1):42362.
Bhadra P, Yan J, Li J, et al. AmPEP: sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci Rep. 2018;8(1):1697.
Wang CJ, et al. Characterization and identification of natural antimicrobial peptides on different organisms. Int J Mole Sci. 2020;21(3):986.
Yan J, Bhadra P, Li A, et al. Deep-AmPEP30: improve short antimicrobial peptides prediction with deep learning. Mole Ther-Nucleic Acids. 2020;20:882–94.
Fu H, Cao Z, Li M, et al. ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding. BMC Genomics. 2020;21(1):597.
Lertampaiporn S, Vorapreeda T, Hongsthong A, et al. Ensemble-AMPPred: robust AMP prediction and recognition using the ensemble learning method with a new hybrid feature for differentiating AMPs. Genes. 2021;12(2):137.
Alex K, Ilya S, Geoffrey H. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.
Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based language model. Interspeech. 2010;2(3):1045–8.
Hendrycks D, Gimpel K. Bridging nonlinearities and stochastic regularizers with gaussian error linear units. CoRR Preprint at 10.48550/arXiv.1606.08415 (2016).
Altschul SF, Madden TL, Schffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Wang J, Yang B, Revote J, Leier A, Marquez-Lago TT, Webb G, et al. POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics. 2017;33(17):2756–8.
Bhasin M, Raghava G. Classification of nuclear receptors based on amino acid composition and dipeptide composition. J Biol Chem. 2004;279(22):23262–6.
Dubchak I, Muchnik I, Holbrook SR, et al. Prediction of protein folding class using global description of amino acid sequence. Proceed Nat Acad Sci United States Am. 1995;92(19):8700–4.
Cai CZ, Han LY, Ji ZL, et al. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nuclc Acids Res. 2003;31(13):3692–7.
Cai CZ, et al. Enzyme family classification by support vector machines. Proteins. 2004;55(1):66–76.
Dubchak I, et al. Recognition of a protein fold in the context of the Structural Classification of Proteins (SCOP) classification. Proteins. 1999;35(4):401–7.
Han LY, et al. Prediction of RNA-binding proteins from primary sequence by a support vector machine approach. RNA. 2004;10(3):355–68.
Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405(2):442–51.
Li J, Fong S, Mohammed S, et al. Improving the classification performance of biological imbalanced datasets by swarm optimization algorithms. J Supercomput. 2016;72(10):3708–28.
Hanley JA, Mcneil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.
Davis J, Goadrich M. (2006) The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, pp. 233-240
Lata S, Mishra NK, Raghava GP. AntiBP2: improved version of antibacterial peptide prediction. BMC Bioinf. 2010;11(1):S19.
Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S. CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res. 2010;38:D774–80.
Veltri D, Kamath U, Shehu A. Improving recognition of antimicrobial peptides and target selectivity through machine learning and genetic programming. Trans Comput Biol Bioinf. 2015;14(2):300–13.
Kumar M, Gromiha MM, Raghava GPS. Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins Struct Funct Bioinf. 2008;71(1):189–94.
Antimicrobial Peptide Scanner vr.2 web server, http://www.ampscanner.com, last Accessed 15 Jan 2020
Comments (0)