iAMP-CRA: Identifying Antimicrobial Peptides Using Convolutional Recurrent Neural Network with Self-Attention

Chen Z, Zhao P, Li F, et al. iFeature: a python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics. 2018;34(14):2499–502.

Article  MATH  Google Scholar 

Daniel V, et al. Deep learning improves antimicrobial peptide recognition. Bioinformatics. 2018;34(16):2740–7.

Article  MATH  Google Scholar 

Xiao X, Wang P, Lin WZ, et al. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem. 2013;436(2):168–77.

Article  MATH  Google Scholar 

Meher PK, Sahu TK, Saini V, et al. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep. 2017;7(1):42362.

Article  Google Scholar 

Bhadra P, Yan J, Li J, et al. AmPEP: sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci Rep. 2018;8(1):1697.

Article  MATH  Google Scholar 

Wang CJ, et al. Characterization and identification of natural antimicrobial peptides on different organisms. Int J Mole Sci. 2020;21(3):986.

Article  MATH  Google Scholar 

Yan J, Bhadra P, Li A, et al. Deep-AmPEP30: improve short antimicrobial peptides prediction with deep learning. Mole Ther-Nucleic Acids. 2020;20:882–94.

Article  MATH  Google Scholar 

Fu H, Cao Z, Li M, et al. ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding. BMC Genomics. 2020;21(1):597.

Article  MATH  Google Scholar 

Lertampaiporn S, Vorapreeda T, Hongsthong A, et al. Ensemble-AMPPred: robust AMP prediction and recognition using the ensemble learning method with a new hybrid feature for differentiating AMPs. Genes. 2021;12(2):137.

Article  Google Scholar 

Alex K, Ilya S, Geoffrey H. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.

Article  MATH  Google Scholar 

Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based language model. Interspeech. 2010;2(3):1045–8.

Article  Google Scholar 

Hendrycks D, Gimpel K. Bridging nonlinearities and stochastic regularizers with gaussian error linear units. CoRR Preprint at 10.48550/arXiv.1606.08415 (2016).

Altschul SF, Madden TL, Schffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.

Article  MATH  Google Scholar 

Wang J, Yang B, Revote J, Leier A, Marquez-Lago TT, Webb G, et al. POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics. 2017;33(17):2756–8.

Article  MATH  Google Scholar 

Bhasin M, Raghava G. Classification of nuclear receptors based on amino acid composition and dipeptide composition. J Biol Chem. 2004;279(22):23262–6.

Article  MATH  Google Scholar 

Dubchak I, Muchnik I, Holbrook SR, et al. Prediction of protein folding class using global description of amino acid sequence. Proceed Nat Acad Sci United States Am. 1995;92(19):8700–4.

Article  MATH  Google Scholar 

Cai CZ, Han LY, Ji ZL, et al. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nuclc Acids Res. 2003;31(13):3692–7.

Article  MATH  Google Scholar 

Cai CZ, et al. Enzyme family classification by support vector machines. Proteins. 2004;55(1):66–76.

Article  MATH  Google Scholar 

Dubchak I, et al. Recognition of a protein fold in the context of the Structural Classification of Proteins (SCOP) classification. Proteins. 1999;35(4):401–7.

Article  MATH  Google Scholar 

Han LY, et al. Prediction of RNA-binding proteins from primary sequence by a support vector machine approach. RNA. 2004;10(3):355–68.

Article  MATH  Google Scholar 

Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405(2):442–51.

Article  MATH  Google Scholar 

Li J, Fong S, Mohammed S, et al. Improving the classification performance of biological imbalanced datasets by swarm optimization algorithms. J Supercomput. 2016;72(10):3708–28.

Article  MATH  Google Scholar 

Hanley JA, Mcneil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.

Article  MATH  Google Scholar 

Davis J, Goadrich M. (2006) The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, pp. 233-240

Lata S, Mishra NK, Raghava GP. AntiBP2: improved version of antibacterial peptide prediction. BMC Bioinf. 2010;11(1):S19.

Article  Google Scholar 

Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S. CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res. 2010;38:D774–80.

Article  Google Scholar 

Veltri D, Kamath U, Shehu A. Improving recognition of antimicrobial peptides and target selectivity through machine learning and genetic programming. Trans Comput Biol Bioinf. 2015;14(2):300–13.

Google Scholar 

Kumar M, Gromiha MM, Raghava GPS. Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins Struct Funct Bioinf. 2008;71(1):189–94.

Article  Google Scholar 

Antimicrobial Peptide Scanner vr.2 web server, http://www.ampscanner.com, last Accessed 15 Jan 2020

Comments (0)

No login
gif