GEP-DNN4Mol: automatic chemical molecular design based on deep neural networks and gene expression programming

Berdigaliyev N, Aljofan M. An overview of drug discovery and development. Fut Med Chem. 2020;12(10):939–47.

MATH  Google Scholar 

Sadybekov AV, Katritch V. Computational approaches streamlining drug discovery. Nature. 2023;616(7958):673–85.

Google Scholar 

Schwalbe-Koda D, Gómez-Bombarelli R. Generative models for automatic chemical design. In: Machine learning meets quantum physics; 2020. pp. 445–467.

Kingma DP, Welling M. Auto-encoding variational bayes. 2013. arXiv preprint arXiv:1312.6114.

Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Sci. 2018;4(2):268–76.

Google Scholar 

Weininger D. Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 1988;28(1):31–6.

MATH  Google Scholar 

Kusner MJ, Paige B, Hernández-Lobato JM. Grammar variationalautoencoder. In: International conference on machine learning. PMLR; 2017. pp. 1945–1954.

Dai H, Tian Y, Dai B, Skiena S, Song L. Syntax-directed variationalautoencoder for molecule generation. In: Proceedings of the international conference on learning representations; 2018.

Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molecular graph generation. In: International conference on machine learning. PMLR; 2018. pp. 2323–2332.

Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J. Graphaf: a flow-based autoregressive model for molecular graph generation. 2020. arXiv preprint arXiv:2001.09382.

Lee M, Min K. Mgcvae: multi-objective inverse design via molecular graph conditional variational autoencoder. J Chem Inf Model. 2022;62(12):2943–50.

MATH  Google Scholar 

Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. Generative adversarial networks: an overview. IEEE Signal Process Mag. 2018;35(1):53–65.

Google Scholar 

Sutton RS, McAllester D, Singh S, Mansour Y. Policy gradient methods for reinforcement learning with function approximation. Adv Neural Inf Process Syst. 1999;12.

Yu L, Zhang W, Wang J, Yu Y. Seqgan: sequence generative adversarial nets with policy gradient. Proceedings of the AAAI Conference on Artificial Intelligence 2017;31(1). https://doi.org/10.1609/aaai.v31i1.10804.

Guimaraes GL, Sanchez-Lengeling B, Outeiral C, Farias PLC, Aspuru-Guzik A. Objective-reinforced generative adversarial networks (organ) for sequence generation models. 2017. arXiv preprint arXiv:1705.10843.

Li C, Yamanaka C, Kaitoh K, Yamanishi Y. Transformer-based objective-reinforced generative adversarial network to generate desired molecules. In: IJCAI; 2022. pp. 3884–3890.

Holland JH. Genetic algorithms. Sci Am. 1992;267(1):66–73.

MATH  Google Scholar 

Jensen JH. A graph-based genetic algorithm and generative model/monte carlo tree search for the exploration of chemical space. Chem Sci. 2019;10(12):3567–72.

MATH  Google Scholar 

Yüksel A, Ulusoy E, Ünlü A, Doğan T. Selformer: molecular representation learning via selfies language models. Mach Learn: Sci Technol. 2023;4(2):025035.

Google Scholar 

Krenn M, Häse F, Nigam A, Friederich P, Aspuru-Guzik A. Self-referencing embedded strings (selfies): a 100% robust molecular string representation. Mach Learn: Sci Technol. 2020;1(4):045024.

Google Scholar 

Ramakrishnan R, Dral PO, Rupp M, Von Lilienfeld OA. Quantum chemistry structures and properties of 134 kilo molecules. Sci Data. 2014;1(1):1–7.

MATH  Google Scholar 

Krenn M, Ai Q, Barthel S, Carson N, Frei A, Frey NC, Friederich P, Gaudin T, Gayle AA, Jablonka KM, et al. Selfies and the future of molecular string representations. Patterns. 2022;3(10):045024.

Google Scholar 

Landrum G, et al. Rdkit: a software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum. 2013;8(31.10):5281.

MATH  Google Scholar 

Covington P, Adams J, Sargin E. Deep neural networks for youtube recommendations. In: Proceedings of the 10th ACM conference on recommender systems; 2016. pp. 191–198.

Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems; 2001. arXiv preprint arXiv:cs/0102027.

Nigam, A., Friederich, P., Krenn, M., Aspuru-Guzik, A.: Augmenting genetic algorithms with deep neural networks for exploring the chemical space. 2019. arXiv preprint arXiv:1909.11655.

McDougall J, Stoner EC. The computation of fermi-Dirac functions. Philos Trans R Soc Lond Ser A, Math Phys Sci. 1938;237(773):67–104.

MATH  Google Scholar 

Liang J, Xu Y, Liu R, Zhu X. Qm-sym, a symmetrized quantum chemistry database of 135 kilo molecules. Sci Data. 2019;6(1):213.

MATH  Google Scholar 

Tanimoto TT. Elementary mathematical theory of classification and prediction. 1958.

Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallvé S, Pujadas G. Molecular fingerprint similarity search in virtual screening. Methods. 2015;71:58–63. https://doi.org/10.1016/j.ymeth.2014.08.005

Article  Google Scholar 

Popova M, Shvets M, Oliva J, et al. MolecularRNN: Generating realistic molecular graphs with optimized properties. 2019. arXiv preprint arXiv:1905.13372.

Wang J, Hsieh C-Y, Wang M, et al. Multi-constraint molecular generation based on conditional transformer, knowledge distillation and reinforcement learning. Nat Mach Intell. 2021;3(10):914–22.

MATH  Google Scholar 

Comments (0)

No login
gif