Optimized seizure detection leveraging band-specific insights from limited EEG channels

Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS. Automated eeg analysis of epilepsy: a review. Knowl-Based Syst. 2013;45:147–65.

Google Scholar 

Affes A, Mdhaffar A, Triki C, Jmaiel M, Freisleben B. Personalized attention-based eeg channel selection for epileptic seizure prediction. Expert Syst Appl. 2022;206:117733.

Google Scholar 

Alotaiby T, El-Samie FEA, Alshebeili SA, Ahmad I. A review of channel selection algorithms for eeg signal processing. EURASIP J Adv Signal Process. 2015;2015:1–21.

Google Scholar 

Berger H. Über das elektroenkephalogramm des menschen. Arch Psychiatr Nervenkr. 1929;87(1):527–70.

MATH  Google Scholar 

Bergil E, Bozkurt MR, Oral C. An evaluation of the channel effect on detecting the preictal stage in patients with epilepsy. Clin EEG Neurosci. 2021;52(5):376–85.

MATH  Google Scholar 

Biau G, Scornet E. A random forest guided tour. TEST. 2016;25:197–227.

MathSciNet  MATH  Google Scholar 

Birjandtalab J, Pouyan MB, Cogan D, Nourani M, Harvey J. Automated seizure detection using limited-channel eeg and non-linear dimension reduction. Comput Biol Med. 2017;82:49–58.

Google Scholar 

Chakrabarti S, Swetapadma A, Pattnaik PK. A channel selection method for epileptic eeg signals. In Emerging technologies in data mining and information security: proceedings of IEMIS 2018. Vol. 1. Springer; 2019. p. 565–573.

Chang N-F, Chen T-C, Chiang C-Y, Chen L-G. Channel selection for epilepsy seizure prediction method based on machine learning. In 2012 Annual international conference of the IEEE Engineering in Medicine and Biology Society; 2012. p. 5162–5.

Cortes C, Vapnik V. Support-vector networks Mach Learn. 1995;20:273–97.

MATH  Google Scholar 

Cover TM. Elements of information theory. Hoboken: Wiley; 1999.

Duun-Henriksen J, Kjaer TW, Madsen RE, Remvig LS, Thomsen CE, Sorensen HBD. Channel selection for automatic seizure detection. Clin Neurophysiol. 2012;123(1):84–92.

Google Scholar 

Ein Shoka AA, Alkinani MH, El-Sherbeny A, El-Sayed A, Dessouky MM. Automated seizure diagnosis system based on feature extraction and channel selection using EEG signals. Brain Informatics. 2021;8(1):1–16.

MATH  Google Scholar 

Emara HM, Elwekeil M, Taha TE, El-Fishawy AS, El-Rabaie E-SM, Alotaiby T, Alshebeili SA, Abd El-Samie FE. Hilbert transform and statistical analysis for channel selection and epileptic seizure prediction. Wirel Pers Commun. 2021;116:3371–95.

Ghosh-Dastidar S, Adeli H, Dadmehr N. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng. 2007;54(9):1545–51.

MATH  Google Scholar 

Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Ccirculation. 2000;101(23):e215–20.

Guyon I, Gunn S, Nikravesh M, Zadeh LA. Feature extraction: foundations and applications, vol. 207. Springer; 2008.

Iranzad R, Liu X. A review of random forest-based feature selection methods for data science education and applications. Int J Data Sci Anal. 2024. https://doi.org/10.1007/s41060-024-00509-w

Khan KA, Shanir P, Khan YU, Farooq O. A hybrid local binary pattern and wavelets based approach for eeg classification for diagnosing epilepsy. Expert Syst Appl. 2020;140: 112895.

MATH  Google Scholar 

Moctezuma LA, Molinas M. Eeg channel-selection method for epileptic-seizure classification based on multi-objective optimization. Front Neurosci. 2020;14:593.

Google Scholar 

PhysioNet Chb-mit scalp EEG database. 2010. https://physionet.org/content/chbmit/1.0.0/. Accessed 4 Jan 2022.

Qaraqe M, Ismail M, Serpedin E. Band-sensitive seizure onset detection via CSP-enhanced EEG features. Epilepsy Behav. 2015;50:77–87.

Google Scholar 

Sayeed MA, Mohanty S, Kougianos E, Rachakonda L. Rseiz: a channel selection based approach for rapid seizure detection in the IOMT. In 2019 IEEE International symposium on smart electronic systems (iSES)(Formerly iNiS). IEEE; 2019. p. 105–10.

Shoeb A, Edwards H, Connolly J, Bourgeois B, Treves ST, Guttag J. Patient-specific seizure onset detection. Epilepsy Behav. 2004;5(4):483–98.

Google Scholar 

Sikdar D, Roy R, Mahadevappa M. Epilepsy and seizure characterisation by multifractal analysis of EEG subbands. Biomed Signal Process Control. 2018;41:264–70.

Google Scholar 

Singh K, Malhotra J. Smart neurocare approach for detection of epileptic seizures using deep learning based temporal analysis of eeg patterns. Multimedia Tools Appl. 2022;81(20):29555–86.

Google Scholar 

Truong ND, Kuhlmann L, Bonyadi MR, Yang J, Faulks A, Kavehei O. Supervised learning in automatic channel selection for epileptic seizure detection. Expert Syst Appl. 2017;86:199–207.

Google Scholar 

Tuncer E, Bolat ED. Channel based epilepsy seizure type detection from electroencephalography (EEG) signals with machine learning techniques. Biocybern Biomed Eng. 2022;42(2):575–95.

MATH  Google Scholar 

Wang Z, Mengoni P. Seizure classification with selected frequency bands and EEG montages: a natural language processing approach. Brain Informatics. 2022;9(1):11.

MATH  Google Scholar 

WHO. Epilepsy. WHO; 2024. https://www.who.int/news-room/fact-sheets/detail/epilepsy.

Yang S, Li B, Zhang Y, Duan M, Liu S, Zhang Y, Feng X, Tan R, Huang L, Zhou F. Selection of features for patient-independent detection of seizure events using scalp EEG signals. Comput Biol Med. 2020;119: 103671.

Google Scholar 

Yildiz M, Bergil E. The investigation of channel selection effects on epileptic analysis of EEG signals. Balkan J Electr Comput Eng. 2015;3:236–41.

MATH  Google Scholar 

Comments (0)

No login
gif