Funkner AA, Yakovlev AN, Kovalchuk SV. Data-driven modeling of clinical pathways using electronic health records. Procedia Comput Sci. 2017;121:835–42.
Ghassemi M, et al. A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data. In: Proceedings of 29th AAAI conference on artificial intelligence; 2015. p. 446–453.
Qiao Z, Wu X, Ge S, Fan W. MNN: multimodal attentional neural networks for diagnosis prediction. Extraction. 2019;1:A1.
Hung CY, Lin CH, Chang CS, Li JL, Lee CC. Predicting gastrointestinal bleeding events from multimodal in-hospital electronic health records using deep fusion networks. In: Proceedings of 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE; 2019. pp. 2447–2450.
Niu S, Yin Q, Song Y, Guo Y, Yang X. Label dependent attention model for disease risk prediction using multimodal electronic health records. In: Proceedings of 2021 IEEE international conference on data mining (ICDM). IEEE; 2021. pp. 449–458.
Li R, Ma F, Gao J. Integrating Multimodal Electronic Health Records for Diagnosis Prediction. In: Proceedings of AMIA annual symposium proceedings. vol. 2021. American Medical Informatics Association; 2021. p. 726.
London AJ. Artificial intelligence and black-box medical decisions: accuracy versus explainability. Hastings Cent Rep. 2019;49(1):15–21.
World Health Organization.: Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
Alkofide H, Alhammad AM, Alruwaili A, Aldemerdash A, Almangour TA, Alsuwayegh A, et al. Multidrug-resistant and extensively drug-resistant enterobacteriaceae: prevalence, treatments, and outcomes–a retrospective cohort study. Infection and Drug Resistance. 2020; pp. 4653–4662.
World Health Organization.: WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance. https://www.who.int/publications/i/item/9789240093461.
Tang R, et al. Machine learning in predicting antimicrobial resistance: a systematic review and meta-analysis. Int J Antimicrob Agents. 2022;60(5–6): 106684.
Gouareb R, Bornet A, Proios D, Pereira SG, Teodoro D. Detection of patients at risk of multidrug-resistant enterobacteriaceae infection using graph neural networks: a retrospective study. Health Data Sci. 2023;3:0099.
Wang Y, Wang G, Zhao Y, Wang C, Chen C, Ding Y, et al. A deep learning model for predicting multidrug-resistant organism infection in critically ill patients. J Intensive Care. 2023;11(1):49.
Li Y, Cao Y, Wang M, Wang L, Wu Y, Fang Y, et al. Development and validation of machine learning models to predict MDRO colonization or infection on ICU admission by using electronic health record data. Antimicrob Resist Infect Control. 2024;13(1):74.
Jimenez F, Palma J, Sanchez G, Marin D, Palacios MF, López ML. Feature selection based multivariate time series forecasting: an application to antibiotic resistance outbreaks prediction. Artif Intell Med. 2020;104: 101818.
Tharmakulasingam M, Wang W, Kerby M, La Ragione R, Fernando A. TransAMR: an interpretable transformer model for accurate prediction of antimicrobial resistance using antibiotic administration data. IEEE Access, 2023
Visonà G, Duroux D, Miranda L, Sükei E, Li Y, Borgwardt K, et al. Multimodal learning in clinical proteomics: enhancing antimicrobial resistance prediction models with chemical information. Bioinformatics. 2023;39(12):717.
Sambarey A, Smith K, Chung C, Arora HS, Yang Z, Agarwal PP, et al. Integrative analysis of multimodal patient data identifies personalized predictors of tuberculosis treatment prognosis. IScience. 2024;27(2):1.
Pascual-Sánchez L, Mora-Jiménez I, Martínez-Agüero S, Álvarez Rodríguez J, Soguero-Ruiz C. Predicting multidrug resistance using temporal clinical data and machine learning methods. In: 2021 IEEE international conference on bioinformatics and biomedicine (BIBM); 2021. p. 2826–2833.
Escudero-Arnanz Ó, Rodríguez-Álvarez J, Mikalsen KØ, Jenssen R, Soguero-Ruiz C. On the use of time series kernel and dimensionality reduction to identify the acquisition of antimicrobial multidrug resistance in the intensive care unit. arXiv preprint arXiv:2107.10398. 2021;.
Escudero-Arnanz Ó, Mora-Jiménez I, Martínez-Agüero S, Álvarez-Rodríguez J, Soguero-Ruiz C. Feature selection and tree-based models to predict multidrugresistance. In: Annu. Congr. Spanish Soc. Biomed. Eng.; 2020. p. 464–467.
Rey-Tarancón J, Mora-Jiménez I, Álvarez-Rodríguez J, Soguero-Ruiz C. Feature selection and machine learning for predicting multi-drug resistance just after ICU admission. In: Annu. Congr. Spanish Soc. Biomed. Eng.; 2020. p. 178–181.
Escudero-Arnanz Ó, Mora-Jiménez I, Martínez-Agüero S, Álvarez-Rodríguez J, Soguero-Ruíz C. Temporal feature selection for characterizing antimicrobial multidrug resistance in the intensive care unit. In: AAI4H@ ECAI; 2020. p. 54–59.
Martínez-Agüero S, Soguero-Ruiz C, Alonso-Moral JM, Mora-Jiménez I, Álvarez-Rodríguez J, Marques AG. Interpretable clinical time-series modeling with intelligent feature selection for early prediction of antimicrobial multidrug resistance. Future Gener Comput Syst. 2022;133:68–83.
Escudero-Arnanz Ó, et al. Explainable artificial intelligence techniques for irregular temporal classification of multidrug resistance acquisition in intensive care unit patients. arXiv preprint arXiv:2407.17165. 2024
Martín-Palomeque P, Escudero-Arnanz Ó, Álvarez-Rodríguez J, Soguero-Ruiz C. Irregular temporal classification of multidrug resistance development in intensive care unit patients. In: 2024 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE; 2024. p. 5016–5023.
Escudero-Arnanz Ó, Soguero-Ruiz C, Marques AG. Explainable spatio-temporal GCNNs for irregular multivariate time series: architecture and application to ICU patient data. arXiv preprint arXiv:2411.01070. 2024
Xie F, et al. Deep learning for temporal data representation in electronic health records: a systematic review of challenges and methodologies. J Biomed Inform. 2022;126: 103980.
Géron A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, Inc.; 2022.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
Sordo M. Introduction to neural networks in healthcare. Open Clinical: Knowledge Management for Medical Care. 2002
Cho K, Merrienboer B, Bahdanau D, Bengio Y. On the properties of neural machine translation: encoder-decoder approaches. In: Eighth workshop on syntax, semantics and structure in statistical translation; 2014.
Vaswani A. Attention is all you need. Advances in Neural Information Processing Systems. 2017
Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. 2016
Xu Y, Xu S, Ramprassad M, Tumanov A, Zhang C. TransEHR: self-supervised transformer for clinical time series data. In: Machine Learning for Health (ML4H). PMLR; 2023. pp. 623–635.
Escudero-Arnanz Ó, Marques AG, Soguero-Ruiz C, Mora-Jiménez I, Robles G. dtwParallel: a Python package to efficiently compute dynamic time warping between time series. SoftwareX. 2023;22: 101364.
Gao J, Li P, Chen Z, Zhang J. A survey on deep learning for multimodal data fusion. Neural Comput. 2020;32(5):829–64.
Article MathSciNet MATH Google Scholar
Huang SC, Pareek A, Seyyedi S, Banerjee I, Lungren MP. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digital Med. 2020;3(1):136.
Zhang YD, et al. Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation. Inf Fusion. 2020;64:149–87.
Gugulothu N, Tv V, Malhotra P, Vig L, Agarwal P, Shroff G. Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint. 2017
Lim B, Arik SO, Loeff N, Pfister T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int J Forecast. 2021;37(4):1748–64.
Tolles J, Meurer WJ. Logistic regression: relating patient characteristics to outcomes. JAMA. 2016;316(5):533–4.
Muñoz-Romero S, Gorostiaga A, Soguero-Ruiz C, Mora-Jiménez I, Rojo-Alvarez JL. Informative variable identifier: expanding interpretability in feature selection. Pattern Recogn. 2020;98: 107077.
Efron B. The jackknife, the bootstrap and other resampling plans. SIAM; 1982.
Li W. Mutual information functions versus correlation functions. J Stat Phys. 1990;60(5):823–37.
Article MathSciNet MATH Google Scholar
Chesneau C, Hebiri M. Some theoretical results on the grouped variables LASSO. Math Methods Statist. 2008;17(4):317–26.
Article MathSciNet MATH Google Scholar
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
Breiman L. Statistical modeling: the two cultures. Stat Sci. 2001;16(3):199–231.
Article MathSciNet MATH Google Scholar
Fonti V, Belitser E. Feature selection using LASSO. VU Amsterdam Research Paper in Business Analytics. 2017;30:1–25.
Huang N, Lu G, Xu D. A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies. 2016;9(10):767.
Arrieta AB, et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion. 2020;58:82–115.
Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 2019;1:206–15.
Kaji DA, et al. An attention based deep learning model of clinical events in the intensive care unit. PLoS ONE. 2019;14(2): e0211057.
Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. 2014
Sinha A, Dolz J. Multi-scale self-guided attention for medical image segmentation. IEEE J Biomed Health Inform. 2020;25(1):121–30.
Zhang Y, Li J. Application of heartbeat-attention mechanism for detection of myocardial infarction using 12-lead ECG records. Appl Sci. 2019;9(16):3328.
Gandin I, Scagnetto A, Romani S, Barbati G. Interpretability of time-series deep learning models: a study in cardiovascular patients admitted to Intensive care unit. J Biomed Inform. 2021;121: 103876.
Crabbé J, Van Der Schaar M. Explaining time series predictions with dynamic masks. In: Proceedings of international conference on machine learning. PMLR; 2021. pp. 2166–2177.
Fong R, Patrick M, Vedaldi A. Understanding deep networks via extremal perturbations and smooth masks. In: Proceedings of the IEEE/CVF international conference on computer vision; 2019. pp. 2950–2958.
Thombley M, Stier D. Menu of suggested provisions for state tuberculosis prevention and control laws. US Department of Health and Human Services Centers for Disease Control and Prevention, Atlanta. 2010
Martínez-Agüero S, Mora-Jiménez I, Lérida-García J, Álvarez-Rodríguez J, Soguero-Ruiz C. Machine learning techniques to identify antimicrobial resistance in the intensive care unit. Entropy. 2019;21(6):603.
De Oliveira DM, Forde BM, Kidd TJ, Harris PN, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020;33(3):10–1128.
Liu G, Thomsen LE, Olsen JE. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: a mini-review. J Antimicrob Chemother. 2022;77(3):556–67.
Karam G, Chastre J, Wilcox MH, Vincent JL. Antibiotic strategies in the era of multidrug resistance. Crit Care. 2016;20:1–9.
Wilson T, Nolte D, Omar S. Bed occupancy and nosocomial infections in the intensive care unit: a retrospective observational study in a tertiary hospital. S Afr J Crit Care. 2024;40(2):71–5.
Comments (0)