The SARS-CoV-2 envelope PDZ binding motif acts as a virulence factor disrupting host’s epithelial cell–cell junctions

Robinot R, Hubert M, de Melo GD, Lazarini F, Bruel T, Smith N, et al. SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nat Commun. 2021;12(1):4354.

CAS  PubMed  PubMed Central  Google Scholar 

Milross L, Majo J, Cooper N, Kaye PM, Bayraktar O, Filby A, et al. Post-mortem lung tissue: the fossil record of the pathophysiology and immunopathology of severe COVID-19. Lancet Respir Med. 2022;10(1):95–106.

CAS  PubMed  Google Scholar 

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.

CAS  PubMed  PubMed Central  Google Scholar 

Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842–4.

CAS  PubMed  Google Scholar 

Daamen AR, Bachali P, Owen KA, Kingsmore KM, Hubbard EL, Labonte AC, et al. Comprehensive transcriptomic analysis of COVID-19 blood, lung, and airway. Sci Rep. 2021;11(1):7052.

CAS  PubMed  PubMed Central  Google Scholar 

Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69.

PubMed  PubMed Central  Google Scholar 

Jimenez-Guardeño JM, Nieto-Torres JL, DeDiego ML, Regla-Nava JA, Fernandez-Delgado R, Castaño-Rodriguez C, et al. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog. 2014;10(8): e1004320.

PubMed  PubMed Central  Google Scholar 

Xia B, Shen X, He Y, Pan X, Liu FL, Wang Y, et al. SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target. Cell Res. 2021;31(8):847–60.

CAS  PubMed  PubMed Central  Google Scholar 

DeDiego ML, Alvarez E, Almazán F, Rejas MT, Lamirande E, Roberts A, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81(4):1701–13.

CAS  PubMed  Google Scholar 

Boson B, Legros V, Zhou B, Siret E, Mathieu C, Cosset FL, et al. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J Biol Chem. 2021;296: 100111.

CAS  PubMed  Google Scholar 

Nieto-Torres JL, Dediego ML, Alvarez E, Jiménez-Guardeño JM, Regla-Nava JA, Llorente M, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology. 2011;415(2):69–82.

CAS  PubMed  Google Scholar 

Baral B, Saini V, Tandon A, Singh S, Rele S, Dixit AK, et al. SARS-CoV-2 envelope protein induces necroptosis and mediates inflammatory response in lung and colon cells through receptor interacting protein kinase 1. Apoptosis. 2023;28(11–12):1596–617.

CAS  PubMed  Google Scholar 

Tang Z, Xu Y, Tan Y, Shi H, Jin P, Li Y, et al. CD36 mediates SARS-CoV-2-envelope-protein-induced platelet activation and thrombosis. Nat Commun. 2023;14(1):5077.

CAS  PubMed  PubMed Central  Google Scholar 

Teoh KT, Siu YL, Chan WL, Schlüter MA, Liu CJ, Peiris JSM, et al. The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Mol Biol Cell. 2010;21(22):3838–52.

CAS  PubMed  PubMed Central  Google Scholar 

Ávila-Flores A, Sánchez-Cabezón JJ, Ochoa-Echeverría A, Checa AI, Rosas-García J, Téllez-Araiza M, et al. Identification of host PDZ-based interactions with the SARS-CoV-2 E protein in human monocytes. Int J Mol Sci. 2023;24(16):12793.

PubMed  PubMed Central  Google Scholar 

Liu BM, Yao Q, Cruz-Cosme R, Yarbrough C, Draper K, Suslovic W, et al. Genetic conservation and diversity of SARS-CoV-2 envelope gene across variants of concern. J Med Virol janv. 2025;97(1): e70136.

CAS  Google Scholar 

Wang Y, Pan X, Ji H, Zuo X, Xiao GF, Li J, et al. Impact of SARS-CoV-2 envelope protein mutations on the pathogenicity of Omicron XBB. Cell Discov. 2023;9(1):80.

PubMed  PubMed Central  Google Scholar 

Chou SHY, Beghi E, Helbok R, Moro E, Sampson J, Altamirano V, et al. Global incidence of neurological manifestations among patients hospitalized with COVID-19-A report for the GCS-NeuroCOVID consortium and the ENERGY consortium. JAMA Netw Open. 2021;4(5):e2112131.

PubMed  PubMed Central  Google Scholar 

Baig AM. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther. 2020;26(5):499–501.

CAS  PubMed  PubMed Central  Google Scholar 

Alonso-Bellido IM, Bachiller S, Vázquez G, Cruz-Hernández L, Martínez E, Ruiz-Mateos E, et al. The Other Side of SARS-CoV-2 Infection: Neurological Sequelae in Patients. Front Aging Neurosci. 2021;13: 632673.

CAS  PubMed  PubMed Central  Google Scholar 

Bauer L, Laksono BM, de Vrij FMS, Kushner SA, Harschnitz O, van Riel D. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 2022;45(5):358–68.

CAS  PubMed  PubMed Central  Google Scholar 

Yang AC, Kern F, Losada PM, Agam MR, Maat CA, Schmartz GP, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595(7868):565–71.

CAS  PubMed  PubMed Central  Google Scholar 

Serra R, Simard JM. Adherens, tight, and gap junctions in ependymal cells: a systematic review of their contribution to CSF-brain barrier. Front Neurol. 2023;14:1092205.

PubMed  PubMed Central  Google Scholar 

Watson PM, Anderson JM, Vanltallie CM, Doctrow SR. The tight-junction-specific protein ZO-1 is a component of the human and rat blood-brain barriers. Neurosci Lett. 1991;129(1):6–10.

CAS  PubMed  Google Scholar 

Su W, Ju J, Gu M, Wang X, Liu S, Yu J, et al. SARS-CoV-2 envelope protein triggers depression-like behaviors and dysosmia via TLR2-mediated neuroinflammation in mice. J Neuroinflammation. 2023;20(1):110.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther. 2021;6(1):337.

CAS  PubMed  PubMed Central  Google Scholar 

Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, McGary H, Razmpour R, Galie PA, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier. bioRxiv. 2020. https://doi.org/10.1016/j.nbd.2020.105131.

PubMed  PubMed Central  Google Scholar 

Caillet-Saguy C, Durbesson F, Rezelj VV, Gogl G, Tran QD, Twizere JC, et al. Host PDZ-containing proteins targeted by SARS-Cov-2. FEBS J. 2021. https://doi.org/10.1111/febs.15881.

CAS  PubMed  Google Scholar 

Zhu Y, Alvarez F, Wolff N, Mechaly A, Brûlé S, Neitthoffer B, et al. Interactions of severe acute respiratory syndrome coronavirus 2 protein E with cell junctions and polarity PSD-95/Dlg/ZO-1-containing proteins. Front Microbiol. 2022;13: 829094.

PubMed  PubMed Central  Google Scholar 

de Melo GD, Perraud V, Alvarez F, Vieites-Prado A, Kim S, Kergoat L, et al. Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants. Nat Commun. 2023;14(1):4485.

PubMed  PubMed Central  Google Scholar 

Lindenbach BD. Infectivity produced in cell culture and in vivo. In: Tang H, editor. Hepatitis C: methods and protocols. Totowa: Humana Press; 2009. p. 329–36.

Google Scholar 

AVMA. AVMA guidelines for the euthanasia of animals: 2020. Schaumburg: American Veterinary Medical Association; 2020.

Google Scholar 

Serafini RA, Frere JJ, Zimering J, Giosan IM, Pryce KD, Golynker I, et al. SARS-CoV-2 airway infection results in the development of somatosensory abnormalities in a hamster model. Sci Signal. 2023;16(784):eade4984.

CAS  PubMed  PubMed Central  Google Scholar 

Cokelaer T, Desvillechabrol D, Legendre R, Cardon M. Sequana: a set of snakemake NGS pipelines. JOSS. 2017;2(16):352.

Google Scholar 

Köster J, Rahmann S. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19):2520–2.

PubMed  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.

PubMed  PubMed Central 

Comments (0)

No login
gif