Robinot R, Hubert M, de Melo GD, Lazarini F, Bruel T, Smith N, et al. SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nat Commun. 2021;12(1):4354.
CAS PubMed PubMed Central Google Scholar
Milross L, Majo J, Cooper N, Kaye PM, Bayraktar O, Filby A, et al. Post-mortem lung tissue: the fossil record of the pathophysiology and immunopathology of severe COVID-19. Lancet Respir Med. 2022;10(1):95–106.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
CAS PubMed PubMed Central Google Scholar
Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842–4.
Daamen AR, Bachali P, Owen KA, Kingsmore KM, Hubbard EL, Labonte AC, et al. Comprehensive transcriptomic analysis of COVID-19 blood, lung, and airway. Sci Rep. 2021;11(1):7052.
CAS PubMed PubMed Central Google Scholar
Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69.
PubMed PubMed Central Google Scholar
Jimenez-Guardeño JM, Nieto-Torres JL, DeDiego ML, Regla-Nava JA, Fernandez-Delgado R, Castaño-Rodriguez C, et al. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog. 2014;10(8): e1004320.
PubMed PubMed Central Google Scholar
Xia B, Shen X, He Y, Pan X, Liu FL, Wang Y, et al. SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target. Cell Res. 2021;31(8):847–60.
CAS PubMed PubMed Central Google Scholar
DeDiego ML, Alvarez E, Almazán F, Rejas MT, Lamirande E, Roberts A, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81(4):1701–13.
Boson B, Legros V, Zhou B, Siret E, Mathieu C, Cosset FL, et al. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J Biol Chem. 2021;296: 100111.
Nieto-Torres JL, Dediego ML, Alvarez E, Jiménez-Guardeño JM, Regla-Nava JA, Llorente M, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology. 2011;415(2):69–82.
Baral B, Saini V, Tandon A, Singh S, Rele S, Dixit AK, et al. SARS-CoV-2 envelope protein induces necroptosis and mediates inflammatory response in lung and colon cells through receptor interacting protein kinase 1. Apoptosis. 2023;28(11–12):1596–617.
Tang Z, Xu Y, Tan Y, Shi H, Jin P, Li Y, et al. CD36 mediates SARS-CoV-2-envelope-protein-induced platelet activation and thrombosis. Nat Commun. 2023;14(1):5077.
CAS PubMed PubMed Central Google Scholar
Teoh KT, Siu YL, Chan WL, Schlüter MA, Liu CJ, Peiris JSM, et al. The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Mol Biol Cell. 2010;21(22):3838–52.
CAS PubMed PubMed Central Google Scholar
Ávila-Flores A, Sánchez-Cabezón JJ, Ochoa-Echeverría A, Checa AI, Rosas-García J, Téllez-Araiza M, et al. Identification of host PDZ-based interactions with the SARS-CoV-2 E protein in human monocytes. Int J Mol Sci. 2023;24(16):12793.
PubMed PubMed Central Google Scholar
Liu BM, Yao Q, Cruz-Cosme R, Yarbrough C, Draper K, Suslovic W, et al. Genetic conservation and diversity of SARS-CoV-2 envelope gene across variants of concern. J Med Virol janv. 2025;97(1): e70136.
Wang Y, Pan X, Ji H, Zuo X, Xiao GF, Li J, et al. Impact of SARS-CoV-2 envelope protein mutations on the pathogenicity of Omicron XBB. Cell Discov. 2023;9(1):80.
PubMed PubMed Central Google Scholar
Chou SHY, Beghi E, Helbok R, Moro E, Sampson J, Altamirano V, et al. Global incidence of neurological manifestations among patients hospitalized with COVID-19-A report for the GCS-NeuroCOVID consortium and the ENERGY consortium. JAMA Netw Open. 2021;4(5):e2112131.
PubMed PubMed Central Google Scholar
Baig AM. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther. 2020;26(5):499–501.
CAS PubMed PubMed Central Google Scholar
Alonso-Bellido IM, Bachiller S, Vázquez G, Cruz-Hernández L, Martínez E, Ruiz-Mateos E, et al. The Other Side of SARS-CoV-2 Infection: Neurological Sequelae in Patients. Front Aging Neurosci. 2021;13: 632673.
CAS PubMed PubMed Central Google Scholar
Bauer L, Laksono BM, de Vrij FMS, Kushner SA, Harschnitz O, van Riel D. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 2022;45(5):358–68.
CAS PubMed PubMed Central Google Scholar
Yang AC, Kern F, Losada PM, Agam MR, Maat CA, Schmartz GP, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595(7868):565–71.
CAS PubMed PubMed Central Google Scholar
Serra R, Simard JM. Adherens, tight, and gap junctions in ependymal cells: a systematic review of their contribution to CSF-brain barrier. Front Neurol. 2023;14:1092205.
PubMed PubMed Central Google Scholar
Watson PM, Anderson JM, Vanltallie CM, Doctrow SR. The tight-junction-specific protein ZO-1 is a component of the human and rat blood-brain barriers. Neurosci Lett. 1991;129(1):6–10.
Su W, Ju J, Gu M, Wang X, Liu S, Yu J, et al. SARS-CoV-2 envelope protein triggers depression-like behaviors and dysosmia via TLR2-mediated neuroinflammation in mice. J Neuroinflammation. 2023;20(1):110.
CAS PubMed PubMed Central Google Scholar
Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther. 2021;6(1):337.
CAS PubMed PubMed Central Google Scholar
Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, McGary H, Razmpour R, Galie PA, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier. bioRxiv. 2020. https://doi.org/10.1016/j.nbd.2020.105131.
PubMed PubMed Central Google Scholar
Caillet-Saguy C, Durbesson F, Rezelj VV, Gogl G, Tran QD, Twizere JC, et al. Host PDZ-containing proteins targeted by SARS-Cov-2. FEBS J. 2021. https://doi.org/10.1111/febs.15881.
Zhu Y, Alvarez F, Wolff N, Mechaly A, Brûlé S, Neitthoffer B, et al. Interactions of severe acute respiratory syndrome coronavirus 2 protein E with cell junctions and polarity PSD-95/Dlg/ZO-1-containing proteins. Front Microbiol. 2022;13: 829094.
PubMed PubMed Central Google Scholar
de Melo GD, Perraud V, Alvarez F, Vieites-Prado A, Kim S, Kergoat L, et al. Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants. Nat Commun. 2023;14(1):4485.
PubMed PubMed Central Google Scholar
Lindenbach BD. Infectivity produced in cell culture and in vivo. In: Tang H, editor. Hepatitis C: methods and protocols. Totowa: Humana Press; 2009. p. 329–36.
AVMA. AVMA guidelines for the euthanasia of animals: 2020. Schaumburg: American Veterinary Medical Association; 2020.
Serafini RA, Frere JJ, Zimering J, Giosan IM, Pryce KD, Golynker I, et al. SARS-CoV-2 airway infection results in the development of somatosensory abnormalities in a hamster model. Sci Signal. 2023;16(784):eade4984.
CAS PubMed PubMed Central Google Scholar
Cokelaer T, Desvillechabrol D, Legendre R, Cardon M. Sequana: a set of snakemake NGS pipelines. JOSS. 2017;2(16):352.
Köster J, Rahmann S. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19):2520–2.
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.
Comments (0)