Non-monotonic response of macrophages to mechanical stretch impacts skin wound healing

Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-mediated inflammation in skin wound healing. Cells. 2022;11(19): v2953.

Google Scholar 

Gandolfi S, Sanouj A, Chaput B, Coste A, Sallerin B, Varin A. The role of adipose tissue-derived stromal cells, macrophages and bioscaffolds in cutaneous wound repair. Biol Direct. 2024;19(1):85.

CAS  PubMed  PubMed Central  Google Scholar 

Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol. 2024;25(8):599–616.

PubMed  Google Scholar 

Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–55.

CAS  PubMed  PubMed Central  Google Scholar 

Chen H, Shi R, Luo B, Yang X, Qiu L, Xiong J, et al. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice. Cell Death Dis. 2015;6(1): e1597.

CAS  PubMed  PubMed Central  Google Scholar 

Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and wound healing. Adv Wound Care. 2012;1(1):10–6.

Google Scholar 

Gharavi AT, Hanjani NA, Movahed E, Doroudian M. The role of macrophage subtypes and exosomes in immunomodulation. Cell Mol Biol Lett. 2022;27(1):83.

CAS  PubMed  PubMed Central  Google Scholar 

Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and Interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;9:419.

PubMed  PubMed Central  Google Scholar 

Zhang S, Liu Y, Zhang X, Zhu D, Qi X, Cao X, et al. Prostaglandin E2 hydrogel improves cutaneous wound healing via M2 macrophages polarization. Theranostics. 2018;8(19):5348–61.

CAS  PubMed  PubMed Central  Google Scholar 

Shook BA, Wasko RR, Rivera-Gonzalez GC, Salazar-Gatzimas E, López-Giráldez F, et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science. 2018;362(6417):eaar2971.

PubMed  PubMed Central  Google Scholar 

Kim SY, Nair MG. Macrophages in wound healing: activation and plasticity. Immunol Cell Biol. 2019;97(3):258–67.

PubMed  PubMed Central  Google Scholar 

Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2014;518(7540):547–51.

PubMed  PubMed Central  Google Scholar 

Bai R, Guo Y, Liu W, Song Y, Yu Z, Ma X. The roles of WNT signaling pathways in skin development and mechanical-stretch-Induced skin regeneration. Biomolecules. 2023;13(12):1702.

CAS  PubMed  PubMed Central  Google Scholar 

Biggs LC, Kim CS, Miroshnikova YA, Wickström SA. Mechanical forces in the skin: roles in tissue architecture, stability, and function. J Invest Dermatol. 2020;140(2):284–90.

CAS  PubMed  Google Scholar 

Chien W-C, Tsai T-F. The pressurized skin: a review on the pathological effect of mechanical pressure on the skin from the cellular perspective. Int J Mol Sci. 2023;24(20):15207.

CAS  PubMed  PubMed Central  Google Scholar 

Du J, Liu W, Song Y, Zhang Y, Dong C, Xiong S, et al. Activating autophagy promotes skin regeneration induced by mechanical stretch during tissue expansion. Burns Trauma. 2024;12:tkad057.

PubMed  PubMed Central  Google Scholar 

Hsieh JY, Smith TD, Meli VS, Tran TN, Botvinick EL, Liu WF. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater. 2017;47:14–24.

CAS  PubMed  Google Scholar 

Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: how physical factors coregulate macrophage plasticity and phagocytosis. Annu Rev Biomed Eng. 2019;21:267–97.

CAS  PubMed  Google Scholar 

Dong L, Song Y, Zhang Y, Zhao W, Wang C, Lin H, et al. Mechanical stretch induces osteogenesis through the alternative activation of macrophages. J Cell Physiol. 2021;236(9):6376–90.

CAS  PubMed  Google Scholar 

Xu H, Guan J, Jin Z, Yin C, Wu S, Sun W, et al. Mechanical force modulates macrophage proliferation via Piezo1-AKT-Cyclin D1 axis. FASEB J. 2022;36(8): e22423.

CAS  PubMed  Google Scholar 

Silva PL, Negrini D, Rocco PR. Mechanisms of ventilator-induced lung injury in healthy lungs. Best Pract Res Clin Anaesthesiol. 2015;29:301–13.

PubMed  Google Scholar 

Maruyama K, Nemoto E, Yamada S. Mechanical regulation of macrophage function—cyclic tensile force inhibits NLRP3 inflammasome-dependent IL-1β secretion in murine macrophages. Inflamm Regen. 2019;39(1):3.

PubMed  PubMed Central  Google Scholar 

Chapman GB, Durante W, Hellums JD, Schafer AI. Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2000;278(3):H748–54.

CAS  PubMed  Google Scholar 

Yamamoto H, Teramoto H, Uetani K, Igawa K, Shimizu E. Cyclic stretch upregulates interleukin-8 and transforming growth factor-beta1 production through a protein kinase C-dependent pathway in alveolar epithelial cells. Respirology. 2002;7(2):103–9.

PubMed  Google Scholar 

Chu SY, Chou CH, Huang HD, Yen MH, Hong HC, Chao PH, et al. Mechanical stretch induces hair regeneration through the alternative activation of macrophages. Nat Commun. 2019;10(1):1524.

PubMed  PubMed Central  Google Scholar 

Atcha H, Meli VS, Davis CT, Brumm KT, Anis S, Chin J, et al. Crosstalk between CD11b and Piezo1 mediates macrophage responses to mechanical cues. Front Immunol. 2021;22(12): 689397.

Google Scholar 

Schoenenberger AD, Tempfer H, Lehner C, Egloff J, Mauracher M, Bird A, et al. Macromechanics and polycaprolactone fiber organization drive macrophage polarization and regulate inflammatory activation of tendon in vitro and in vivo. Biomaterials. 2020;249: 120034.

CAS  PubMed  Google Scholar 

Wu J, Yan Z, Schwartz DE, Yu J, Malik AB, Hu G. Activation of NLRP3 inflammasome in alveolar macrophages contributes to mechanical stretch induced lung inflammation and injury. J Immunol. 2013;190:3590–9.

CAS  PubMed  Google Scholar 

Mohd Yasin ZN, Mohd Idrus FN, Hoe CH, Yvonne-Tee GB. Macrophage polarization in THP-1 cell line and primary monocytes: a systematic review. Differentiation. 2022;128:67–82.

CAS  PubMed  Google Scholar 

Zhou L, Wang J, Liang J, Hou H, Li J, Li J, et al. Psoriatic mesenchymal stem cells stimulate the angiogenesis of human umbilical vein endothelial cells in vitro. Microvasc Res. 2021;136: 104151.

CAS  PubMed  Google Scholar 

Baudin B, Bruneel A, Bosselut N, Vaubourdolle M. A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc. 2007;2(3):481–5.

CAS  PubMed  Google Scholar 

Chen Z, Shen G, Tan X, Qu L, Zhang C, Ma L, et al. ID1/ID3 mediate the contribution of skin fibroblasts to local nerve regeneration through Itga6 in wound repair. Stem Cells Transl Med. 2021;10(12):1637–49.

CAS  PubMed  PubMed Central  Google Scholar 

Du F, Liu M, Wang J, Hu L, Zeng D, Zhou S, et al. Metformin coordinates with mesenchymal cells to promote VEGF-mediated angiogenesis in diabetic wound healing through Akt/mTOR activation. Metabolism. 2023;140: 155398.

CAS  PubMed  Google Scholar 

Osborn G, López-Abente J, Adams R, Laddach R, Grandits M, Bax HJ, et al. Hyperinflammatory repolarisation of ovarian cancer patient macrophages by anti-tumour IgE antibody, MOv18, restricts an immunosuppressive macrophage: Treg cell interaction. Nat Commun. 2025;6(1):2903.

Google Scholar 

Wei Q, Liu M, Li S, Shi S, Du F, Peng H, et al. The composite biomatrix SC/CM improved the therapeutic effects of xenogeneic MSC on wound healing in immune-competent mice via immune niche reprogramming. J Mater Sci. 2024;59(32):15514–28.

CAS  Google Scholar 

Du F, Zhang S, Li S, Zhou S, Zeng D, Zhang J, et al. Controlled release of mesenchymal stem cell-derived nanovesicles through glucose- and reactive oxygen species-responsive hydrogels accelerates diabetic wound healing. J Control Releas. 2024;376:985–98.

CAS  Google Scholar 

Shaver M, Gomez K, Kaiser K, Hutcheson JD. Mechanical stretch leads to increased caveolin-1 content and mineralization potential in extracellular vesicles from vascular smooth muscle cells. BMC Mol Cell Biol. 2024;25(1):8.

CAS  PubMed  PubMed Central  Google Scholar 

Agha R, Ogawa R, Pietramaggiori G, Orgill DP. A review of the role of mechanical forces in cutaneous wound healing. J Surg Res. 2011;171(2):700–8.

PubMed  Google Scholar 

Comments (0)

No login
gif