Subtype-specific dysregulation of biogenic amine-related genes and miRNAs in breast cancer: identification of DRD2, HRH2, and HRH4 as potential therapeutic targets in TNBC and HER2+ subtypes

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

Article  CAS  PubMed  Google Scholar 

Wojciechowska U, Barańska K, Miklewska M, Didkowska JA (2023) Cancer incidence and mortality in Poland in 2020, Nowotwory. J Oncol 73:Article 3

Google Scholar 

Testa U, Castelli G, Pelosi E (2020) Breast cancer: a molecularly heterogenous disease needing subtype-specific treatments. Med Sci 8(1):18

CAS  Google Scholar 

Rakha EA, Tse GM, Quinn CM (2023) An update on the pathological classification of breast cancer. Histopathology 82(1):5–16. https://doi.org/10.1111/his.14786

Article  PubMed  Google Scholar 

Tsang JY, Gary MT (2020) Molecular classification of breast cancer. Adv Anat Pathol 27(1):27–35

Article  CAS  PubMed  Google Scholar 

Kumar N, Gann PH, McGregor SM, Sethi A (2023) Quantification of subtype purity in Luminal A breast cancer predicts clinical characteristics and survival. Breast Cancer Res Treat 200(2):225–235. https://doi.org/10.1007/s10549-023-06961-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lafcı O, Celepli P, Öztekin PS, Koşar PN (2023) DCE-MRI radiomics analysis in differentiating luminal a and luminal B breast cancer molecular subtypes. Acad Radiol 30(1):22–29

Article  PubMed  Google Scholar 

Yang Z, Liu Y, Huang Y, Chen Z, Zhang H, Yu Y, Wang X, Cao X (2023) The regrouping of Luminal B ( HER2 negative), a better discriminator of outcome and recurrence score. Cancer Med 12(3):2493–2504. https://doi.org/10.1002/cam4.5089

Article  CAS  PubMed  Google Scholar 

Falato C, Schettini F, Pascual T, Brasó-Maristany F, Prat A (2023) Clinical implications of the intrinsic molecular subtypes in hormone receptor-positive and HER2-negative metastatic breast cancer. Cancer Treat Rev 112:102496

Article  CAS  PubMed  Google Scholar 

Thomas A, Reis-Filho JS, Geyer CE Jr, Wen HY (2023) Rare subtypes of triple negative breast cancer: current understanding and future directions. NPJ Breast Cancer 9(1):55

Article  PubMed  PubMed Central  Google Scholar 

Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in breast cancer—PMC. Annu Rev Med 62:233–247. https://doi.org/10.1146/annurev-med-070909-182917

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, Li Z, Gala K, Fanning S, King TA, Hudis C, Chen D, Taran T, Hortobagyi G, Greene G, Berger M, Baselga J, Chandarlapaty S (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45(12):1439–1445. https://doi.org/10.1038/ng.2822

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swain S, Baselga J, Kim S, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero J, Schneeweiss A, Heeson S, Clark E, Ross G, Benyunes M, Cortes J, CLEOPATRA Study Group (n.d.) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372(8): 724–734. https://doi.org/10.1056/NEJMoa1413513

Azambuja E, Ponde N, Procter M, Rastogi P, Cecchini R, Lambertini M, Aspitia A, Zardavas D, Roca L, Gelber R, Piccart-Gebhart M, Suter T (2020) A pooled analysis of the cardiac events in the trastuzumab adjuvant trials | breast cancer research and treatment. Breast Cancer Res Treat 179:161–171

Article  PubMed  Google Scholar 

Bianchini G, Balko J, Mayer A, Sanders M, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13(11):674–690. https://doi.org/10.1038/nrclinonc.2016.66

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lehmann B, Jovanović B, Chen X, Estrada M, Johnson K, Shyr Y, Moses H, Sanders M, Pietenpol J (2016) Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE 11(6):e0157368. https://doi.org/10.1371/journal.pone.0157368

Article  CAS  PubMed  PubMed Central  Google Scholar 

Natrella G, Vacca M, Minervini F, Faccia M, De Angelis M (2024) A comprehensive review on the biogenic amines in cheeses: their origin, chemical characteristics, hazard and reduction strategies. Foods 13(16):2583. https://doi.org/10.3390/foods13162583

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durak-Dados A, Michalski M, Osek J (2020) Histamine and other biogenic amines in food. J Vet Res 64(2):281–288. https://doi.org/10.2478/jvetres-2020-0029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sánchez-Jiménez F, Ruiz-Pérez MV, Urdiales JL, Medina MA (2013) Pharmacological potential of biogenic amine-polyamine interactions beyond neurotransmission. Br J Pharmacol 170(1):4–16. https://doi.org/10.1111/bph.12109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaves P, Correa-Fiz F, Melgarejo E, Urdiales JL, Medina MA, Sánchez-Jiménez F (2007) Development of an expression macroarray for amine metabolism-related genes. Amino Acids 33(2):315–322. https://doi.org/10.1007/s00726-007-0528-x

Article  CAS  PubMed  Google Scholar 

Kennedy L, Hodges K, Meng F, Alpini G, Francis H (2012) Histamine and histamine receptor regulation of gastrointestinal cancers. Transl Gastrointest Cancer 1(3):215–227

CAS  PubMed  PubMed Central  Google Scholar 

Exploring the interactions of antihistamine with retinoic acid receptor beta (RARB) by molecular dynamics simulations and genome-wide meta-analysis—PubMed (n.d.) https://pubmed.ncbi.nlm.nih.gov/37331258/. Accessed Jan 28, 2025

Zwickl H, Zwickl-Traxler E, Pecherstorfer M (2019) Is neuronal histamine signaling involved in cancer cachexia? Implications and perpectives. Front Oncol 9:1409. https://doi.org/10.3389/fonc.2019.01409

Article  PubMed  PubMed Central  Google Scholar 

Yadav P, Vengoji R, Jain M, Batra SK, Shonka N (2024) Pathophysiological role of histamine signaling and its implications in glioblastoma. Biochim Biophys Acta: Rev Cancer 1879(5):189146. https://doi.org/10.1016/j.bbcan.2024.189146

Article  CAS  PubMed  Google Scholar 

Massari NA, Nicoud MB, Medina VA (2020) Histamine receptors and cancer pharmacology: an update. Br J Pharmacol 177(3):516–538. https://doi.org/10.1111/bph.14535

Article  CAS  PubMed  Google Scholar 

Herranz C, Mateo F, Baiges A, Ruiz de Garibay G, Junza A, Johnson SR, Miller S, García N, Capellades J, Gómez A, Vidal A, Palomero L, Espín R, Extremera AI, Blommaert E, Revilla-López E, Saez B, Gómez-Ollés S, Ancochea J et al (2021) Histamine signaling and metabolism identify potential biomarkers and therapies for lymphangioleiomyomatosis. EMBO Mol Med 13(9):e13929. https://doi.org/10.15252/emmm.202113929

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsushita M, Fujita K, Hatano K, Hayashi T, Kayama H, Motooka D, Hase H, Yamamoto A, Uemura T, Yamamichi G, Tomiyama E, Koh Y, Kato T, Kawashima A, Uemura M, Nojima S, Imamura R, Mubeen A, Netto GJ et al (2022) High-fat diet promotes prostate cancer growth through histamine signaling. Int J Cancer 151(4):623–636. https://doi.org/10.1002/ijc.34028

Article  CAS  PubMed  Google Scholar 

Grant CE, Flis AL, Ryan BM (2022) Understanding the role of dopamine in cancer: past, present and future. Carcinogenesis 43(6):517–527. https://doi.org/10.1093/carcin/bgac045

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendoza-Torreblanca JG, Cárdenas-Rodríguez N, Carro-Rodríguez J, Contreras-García IJ, Garciadiego-Cázares D, Ortega-Cuellar D, Martínez-López V, Alfaro-Rodríguez A, Evia-Ramírez AN, Ignacio-Mejía I, Vargas-Hernández MA, Bandala C (2023) Antiangiogenic effect of dopamine and dopaminergic agonists as an adjuvant therapeutic option in the treatment of cancer, endometriosis, and osteoarthritis. Int J Mol Sci 24(12):10199. https://doi.org/10.3390/ijms241210199

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif