On the Spectrum of Sturmian Hamiltonians of Bounded Type in a Small Coupling Regime

Baake, M., Grimm, U., Joseph, D.: Trace maps, invariants, and some of their applications. Int. J. Modern Phys. B 7, 1527–1550 (1993)

Article  ADS  MathSciNet  MATH  Google Scholar 

Baake, M., Roberts, J.: The dynamics of trace maps. In: Hamiltonian Mechanics (Toruń, 1993), NATO Adv. Sci. Inst. Ser. B Phys. vol. 331, pp. 275–285. Plenum, New York (1994)

Band, R., Beckus, S., Loewy, R.: The dry ten martini problem for Sturmian Hamiltonians (2024). arXiv:2402.16703

Bellissard, J., Iochum, B., Scoppola, E., Testard, D.: Spectral properties of one-dimensional quasicrystals. Commun. Math. Phys. 125, 527–543 (1989)

Article  ADS  MATH  Google Scholar 

Borissov, G., Monakov, G.: Generalized bounded distortion property. J. Dyn. Differ. Eq. (2024). https://doi.org/10.1007/s10884-024-10376-5

Article  Google Scholar 

Casdagli, M.: Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys. 107, 295–318 (1986)

Article  ADS  MathSciNet  MATH  Google Scholar 

Cantat, S., et al.: Painlevé and Schrödinger. Duke Math. J. 149, 411–460 (2009)

Article  MathSciNet  MATH  Google Scholar 

Cao, J., Qu, Y.: Almost sure dimensional properties for the spectrum and the density of states of Sturmian Hamiltonians, (2023). arXiv:2310.07305

Damanik, D.: Gordon-type arguments in the spectral theory of one-dimensional quasicrystals. In: Directions in Mathematical Quasicrystals, CRM Monogr. Ser., vol. vol. 13, pp. 277–305, American Mathematical Society, Providence, RI, (2000)

Damanik, D.: Strictly ergodic subshifts and associated operators. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Proc. Sympos. Pure Math. vol. 76, Part 2, pp. 505–538. American Mathematical Society, Providence, RI (2007)

Damanik, D.: Substitution Hamiltonians with bounded trace map orbits. J. Math. Anal. Appl. 249(2), 393–411 (2000)

Article  MathSciNet  MATH  Google Scholar 

Damanik, D.: Schrödinger operators with dynamically defined potentials. Ergod. Theory Dyn. Syst. 37(6), 1681–1764 (2017). https://doi.org/10.1017/etds.2015.120

Article  MATH  Google Scholar 

Damanik, D., Embree, M., Gorodetski, A.: Spectral properties of Schrödinger operators arising in the study of quasicrystals. Mathematical Physics, pp. 307–370 (2012)

Damanik, D., Embree, M., Gorodetski, A., Tcheremchantsev, S.: The fractal dimension of the spectrum of the Fibonacci Hamiltonian. Commun. Math. Phys. 280(2), 499–516 (2008)

Article  ADS  MathSciNet  MATH  Google Scholar 

Damanik, D., Fillman, J.: One-Dimensional Ergodic Schrödinger Operators. I: General Theory. Graduate Studies in Mathematics, vol. 221. American Mathematical Society, Providence (2022)

Book  MATH  Google Scholar 

Damanik, D., Fillman, J.: One-Dimensional Ergodic Schrödinger Operators. II: Specific Classes. Graduate Studies in Mathematics, vol. 249. American Mathematical Society, Providence (2024)

MATH  Google Scholar 

Damanik, D., Gorodetski, A.: Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian. Nonlinearity 22, 123–143 (2009)

Article  ADS  MathSciNet  MATH  Google Scholar 

Damanik, D., Gorodetski, A.: The spectrum of the weakly coupled Fibonacci Hamiltonian. Electron. Res. Announc. Math. Sci. 16, 23–29 (2009)

MathSciNet  MATH  Google Scholar 

Damanik, D., Gorodetski, A.: Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian. Commun. Math. Phys. 305, 221–277 (2011)

Article  ADS  MathSciNet  MATH  Google Scholar 

Damanik, D., Gorodetski, A.: The spectrum and the spectral type of the off-diagonal Fibonacci operator. arXiv:0807.3024v1

Damanik, D., Gorodetski, A.: The density of states measure of the weakly coupled Fibonacci Hamiltonian. Geom. Funct. Anal. 22, 976–989 (2012). https://doi.org/10.1007/s00039-012-0173-8

Article  MathSciNet  MATH  Google Scholar 

Damanik, D., Gorodetski, A., Yessen, W.N.: The Fibonacci Hamiltonian. Invent. Math. 206, 629–692 (2014)

Article  ADS  MathSciNet  MATH  Google Scholar 

Fan, S., Liu, Q., Wen, Z.: Gibbs-like measure for spectrum of a class of quasi-crystals. Ergod. Theory Dyn. Syst. 31(6), 1669–1695 (2011). https://doi.org/10.1017/S0143385710000635

Article  MathSciNet  MATH  Google Scholar 

Isola, S.: Continued fractions and dynamics. Appl. Math. 5, 1067–1090 (2014). https://doi.org/10.4236/am.2014.57101

Article  Google Scholar 

Jitomirskaya, S.Y., Last, Y.: Dimensional Hausdorff properties of singular continuous spectra. Phys. Rev. Lett. 76, 1765–1769 (1996). https://doi.org/10.1103/PhysRevLett.76.1765

Article  ADS  MathSciNet  MATH  Google Scholar 

Katok, A., Hasselblat, B.: Introduction to the Modern Theory of Dynamical System. Cambridge University Press, Cambridge (1995)

Book  Google Scholar 

Kohmoto, M., Kadanoff, L.P., Tang, C.: Localization problem in one dimension: mapping and escape. Phys. Rev. Lett. 50, 1870–1872 (1983)

Article  ADS  MathSciNet  Google Scholar 

Last, Y.: Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 142, 406–445 (1996)

Article  MathSciNet  MATH  Google Scholar 

Liu, Q.H., Wen, Z.Y.: Hausdorff dimension of spectrum of one-dimensional Schrödinger operator with Sturmian potentials. Potential Anal. 20, 33–59 (2004). https://doi.org/10.1023/A:1025537823884

Article  MathSciNet  MATH  Google Scholar 

Liu, Qing-Hui., Peyrière, Jacques, Wen, Zhi-Ying.: Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials. Comptes Rendus. Mathématique 345(12), 667–672 (2007). https://doi.org/10.1016/j.crma.2007.10.048

Article  MathSciNet  MATH  Google Scholar 

Liu, Qing-Hui., Qu, Yan-Hui., Wen, Zhi-Ying.: The fractal dimensions of the spectrum of Sturm Hamiltonian. Adv. Math. 257, 285–336 (2014). https://doi.org/10.1016/j.aim.2014.02.019

Article  MathSciNet  MATH  Google Scholar 

Luna, A., Yang, W.: Generalized Fiber Contraction Mapping Principle (2024). arXiv:2412.09767

Mei, M.: Spectral properties of discrete Schrödinger operators with potentials generated by primitive invertible substitutions. J. Math. Phys. 55, 082701 (2014)

Article  ADS  MathSciNet  MATH  Google Scholar 

Palis, J., Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press, Cambridge (1993)

MATH  Google Scholar 

Pollicott, M.: Analyticity of dimensions for hyperbolic surface diffeomorphisms. Proc. Am. Math. Soc. 143, 3465–3474 (2015)

Article  MathSciNet  MATH  Google Scholar 

Raymond, L.: A constructive gap labelling for the discrete Schrödinger operator on a quasiperiodic chain, Preprint (1997)

Sütő, A.: The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111, 409–415 (1987)

Article  ADS  MATH  Google Scholar 

Sütő, A.: Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56, 525–531 (1989)

Article  ADS  MathSciNet  MATH  Google Scholar 

Sütő, A.: Schrödinger difference equation with deterministic ergodic potentials. In: Beyond Quasicrystals (Les Houches, 1994), pp. 481–549. Springer, Berlin (1995)

Comments (0)

No login
gif