Albakova Z, Mangasarova Y, Albakov A et al (2022) HSP70 and HSP90 in cancer: cytosolic, endoplasmic reticulum and mitochondrial chaperones of tumorigenesis. Front Oncol. https://doi.org/10.3389/fonc.2022.829520
Article PubMed PubMed Central Google Scholar
Ali MMU, Roe SM, Vaughan CK et al (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013–1017. https://doi.org/10.1038/nature04716
Article PubMed PubMed Central CAS Google Scholar
Aligue R, Akhavan-Niak H, Russell P (1994) A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. EMBO J 13:6099–6106. https://doi.org/10.1002/j.1460-2075.1994.tb06956.x
Article PubMed PubMed Central CAS Google Scholar
Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115. https://doi.org/10.1146/annurev-biochem-060809-095203
Article PubMed CAS Google Scholar
Arlander SJH, Felts SJ, Wagner JM et al (2006) Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem 281:2989–2998. https://doi.org/10.1074/jbc.M508687200
Article PubMed CAS Google Scholar
Bhattacharya K, Weidenauer L, Luengo TM et al (2020) The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation. Nat Commun 11:5975. https://doi.org/10.1038/s41467-020-19783-w
Article PubMed PubMed Central CAS Google Scholar
Boulton DP, Caino MC (2022) Mitochondrial fission and fusion in tumor progression to metastasis. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2022.849962
Article PubMed PubMed Central Google Scholar
Broemer M, Krappmann D, Scheidereit C (2004) Requirement of Hsp90 activity for IκB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-κB activation. Oncogene 23:5378–5386. https://doi.org/10.1038/sj.onc.1207705
Article PubMed CAS Google Scholar
Burrows F, Zhang H, Kamal A (2004) Hsp90 activation and cell cycle regulation. Cell Cycle 3:1530–1536. https://doi.org/10.4161/cc.3.12.1277
Article PubMed CAS Google Scholar
Calderwood SK (2015) Cdc37 as a Co-chaperone to Hsp90. Subcell Biochem 78:103–112. https://doi.org/10.1007/978-3-319-11731-7_5
Article PubMed PubMed Central CAS Google Scholar
Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4–10. https://doi.org/10.1159/000088478
Article PubMed CAS Google Scholar
Carrello A, Allan RK, Morgan SL et al (2004) Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70. Cell Stress Chaperones 9:167–181. https://doi.org/10.1379/CSC-26R.1
Article PubMed PubMed Central CAS Google Scholar
Chen L, Li J, Farah E et al (2016) Cotargeting HSP90 and its client proteins for treatment of prostate cancer. Mol Cancer Ther 15:2107–2118. https://doi.org/10.1158/1535-7163.MCT-16-0241
Article PubMed PubMed Central CAS Google Scholar
Cheng C-F, Fan J, Fedesco M et al (2008) Transforming growth factor α (TGFα)-stimulated secretion of HSP90α: using the receptor LRP-1/CD91 To promote human skin cell migration against a TGFβ-rich environment during wound healing. Mol Cell Biol 28:3344–3358. https://doi.org/10.1128/MCB.01287-07
Article PubMed PubMed Central CAS Google Scholar
Citri A, Gan J, Mosesson Y et al (2004) Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep 5:1165–1170. https://doi.org/10.1038/sj.embor.7400300
Article PubMed PubMed Central CAS Google Scholar
Cyran AM, Zhitkovich A (2022) Heat shock proteins and HSF1 in cancer. Front Oncol. https://doi.org/10.3389/fonc.2022.860320
Article PubMed PubMed Central Google Scholar
Dai C, Whitesell L, Rogers AB et al (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018. https://doi.org/10.1016/j.cell.2007.07.020
Article PubMed PubMed Central CAS Google Scholar
De Nardo D, Masendycz P, Ho S et al (2005) A central role for the Hsp90·Cdc37 molecular chaperone module in interleukin-1 receptor-associated-kinase-dependent signaling by toll-like receptors. J Biol Chem 280:9813–9822. https://doi.org/10.1074/jbc.M409745200
Article PubMed CAS Google Scholar
Dias S, Shmelkov SV, Lam G et al (2002) VEGF165 promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 99:2532–2540. https://doi.org/10.1182/blood.V99.7.2532
Article PubMed CAS Google Scholar
Douglas M, Lim AR, Porter JR et al (2009) The antiproliferative activity of the heat shock protein 90 inhibitor IPI-504 is not dependent on NAD(P)H:quinone oxidoreductase 1 activity in vivo. Mol Cancer Ther 8:3369–3378. https://doi.org/10.1158/1535-7163.MCT-09-0568
Article PubMed CAS Google Scholar
Eckert K, Saliou J-M, Monlezun L et al (2010) The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity. J Biol Chem 285:31304–31312. https://doi.org/10.1074/jbc.M110.138263
Article PubMed PubMed Central CAS Google Scholar
Eustace BK, Sakurai T, Stewart JK et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6:507–514. https://doi.org/10.1038/ncb1131
Article PubMed CAS Google Scholar
Fan ACY, Young JC (2011) Function of cytosolic chaperones in Tom70-mediated mitochondrial import. Protein Pept Lett 18:122–131. https://doi.org/10.2174/092986611794475020
Article PubMed PubMed Central CAS Google Scholar
Fan C-S, Chen C-C, Chen L-L et al (2022) Extracellular HSP90α induces MyD88-IRAK complex-associated IKKα/β-NF-κB/IRF3 and JAK2/TYK2-STAT-3 signaling in macrophages for tumor-promoting M2-polarization. Cells 11:229. https://doi.org/10.3390/cells11020229
Article PubMed PubMed Central CAS Google Scholar
Garg G, Khandelwal A, Blagg BSJ (2016) Anticancer inhibitors of Hsp90 function: beyond the usual suspects. Adv Cancer Res 129:51–88. https://doi.org/10.1016/bs.acr.2015.12.001
Article PubMed PubMed Central CAS Google Scholar
Guo W, Reigan P, Siegel D et al (2008) Enzymatic reduction and glutathione conjugation of benzoquinone ansamycin heat shock protein 90 inhibitors: relevance for toxicity and mechanism of action. Drug Metab Dispos Biol Fate Chem 36:2050–2057. https://doi.org/10.1124/dmd.108.022004
Article PubMed CAS Google Scholar
Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364. https://doi.org/10.1016/s0092-8674(00)80108-7
Comments (0)