External validation of an RSNA 2023 Abdominal Trauma AI Challenge high performing machine learning model in the detection and grading of splenic injuries on CT

Soto JA, Anderson SW. Multidetector CT of blunt abdominal trauma. Radiology. 2012;265(3):678–93.

Article  PubMed  Google Scholar 

Boscak A, Shanmuganathan K. Splenic trauma: what is new?. Radiologic Clinics. 2012;50(1):105–22.

PubMed  Google Scholar 

Yorkgitis BK. Primary care of the blunt splenic injured adult. The American journal of medicine. 2017;130(3):365-e1.

Article  PubMed  Google Scholar 

Soto JA, Anderson SW. Multidetector CT of blunt abdominal trauma. Radiology. 2012;265(3):678–93.

Article  PubMed  Google Scholar 

Jalal S, Parker W, Ferguson D, Nicolaou S. Exploring the role of artificial intelligence in an emergency and trauma radiology department. Canadian Association of Radiologists Journal. 2021;72(1):167–74.

Article  PubMed  Google Scholar 

Bonds MM, Hersperger S, Garwe T, Fails R, Johannesen S, Kim C, Adeseye A, Lees J, Havron W. Adequacy and accuracy of nontrauma center computed tomography: What are we missing?. Journal of Trauma and Acute Care Surgery. 2017;83(1):30–5.

Article  PubMed  Google Scholar 

Hamghalam M, Moreland R, Gomez D, Simpson A, Lin HM, Jandaghi AB, Tafur M, Vlachou PA, Wu M, Brassil M, Crivellaro P. Machine learning detection and characterization of splenic injuries on abdominal computed tomography. Canadian Association of Radiologists Journal. 2024 Jan 8:08465371231221052.

Google Scholar 

Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial intelligence in clinical imaging. InSeminars in nuclear medicine 2011 Nov 1 (Vol. 41, No. 6, pp. 449–462). WB Saunders.

Hermans S, Hu Z, Ball RL, Lin HM, Prevedello LM, Berger FH, Yusuf I, Rudie JD, Vazirabad M, Flanders AE, Shih G, Mongan J, Nicolaou S, Marinelli BS, Davis MA, Magudia K, Sejdić E, Colak E. RSNA 2023 Abdominal Trauma AI Challenge Review and Outcomes Analysis. Radiology: Artificial Intelligence. Published November 6, 2024. e240334. Radiological Society of North America.

Yu AC, Mohajer B, Eng J. External validation of deep learning algorithms for radiologic diagnosis: a systematic review. Radiology: Artificial Intelligence. 2022;4(3):e210064.

PubMed  PubMed Central  Google Scholar 

Langius-Wiffen E, Slotman DJ, Groeneveld J, van Osch JA, Nijholt IM, de Boer E, Nijboer-Oosterveld J, Veldhuis WB, de Jong PA, Boomsma MF. External validation of the RSNA 2020 pulmonary embolism detection challenge winning deep learning algorithm. European Journal of Radiology. 2024 Feb 13:111361.

Article  Google Scholar 

Rudie JD, Lin HM, Ball RL, Jalal S, Prevedello LM, Nicolaou S, Marinelli BS, Flanders AE, Magudia K, Shih G, Davis MA, Mongan J, Chang PD, Berger FH, Hermans S, Law M, Richards T, Grunz JP, Kunz AS, Mathur S, Galea-Soler S, Chung AD, Afat S, Kuo CC, Aweidah L, Villanueva Campos A, Somasundaram A, Sanchez Tijmes FA, Jantarangkoon A, Kayat Bittencourt L, Brassil M, El Hajjami A, Dogan H, Becircic M, Bharatkumar AG, Farina EMJdM, Colak E. The RSNA Abdominal Traumatic Injury CT (RATIC) Dataset. Radiology: Artificial Intelligence. Published October 23, 2024. e240101. Radiological Society of North America.

Tu Z, Talebi H, Zhang H, Yang F, Milanfar P, Bovik A, Li Y. Maxvit: Multi-axis vision transformer. InEuropean conference on computer vision 2022 Oct 23 (pp. 459–479). Cham: Springer Nature Switzerland.

Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks. InInternational conference on machine learning 2019 May 24 (pp. 6105–6114).

Dai Z, Liu H, Le QV, Tan M. Coatnet: Marrying convolution and attention for all data sizes. Advances in neural information processing systems. 2021;34:3965–77.

Google Scholar 

Yun S, Han D, Oh SJ, Chun S, Choe J, Yoo Y. Cutmix: Regularization strategy to train strong classifiers with localizable features. InProceedings of the IEEE/CVF international conference on computer vision 2019 (pp. 6023–6032).

Wright L, Demeure N. Ranger21: a synergistic deep learning optimizer. arXiv preprint arXiv:2106.13731. 2021 Jun 25.

Kozar RA, Crandall M, Shanmuganathan K, Zarzaur BL, Coburn M, Cribari C, Kaups K, Schuster K, Tominaga GT, AAST Patient Assessment Committee. Organ injury scaling 2018 update: spleen, liver, and kidney. Journal of Trauma and Acute Care Surgery. 2018;85(6):1119–22.

Article  PubMed  Google Scholar 

Sun, X., & Xu, W. (2014). Fast implementation of DeLong’s algorithm for comparing the areas under correlated receiver operating characteristic curves. IEEE Signal Processing Letters, 21(11), 1389–1393.

Article  Google Scholar 

Takahashi, K., Yamamoto, K., Kuchiba, A., & Koyama, T. (2022). Confidence interval for micro-averaged F 1 and macro-averaged F 1 scores. Applied Intelligence, 52(5), 4961–4972.

Article  PubMed  Google Scholar 

Cheng CT, Lin HH, · Chih–Po Hsu1 · Huan–Wu Chen2 · Jen–Fu Huang1 · Chi–Hsun Hsieh1 · Chih–Yuan Fu1 · I–Fang Chung3 · Chien–Hung Liao. Deep Learning for Automated Detection and Localization of Traumatic Abdominal Solid Organ Injuries on CT Scans. J Imaging Inform Med 2024;37(3):1113–1123

Article  PubMed  PubMed Central  Google Scholar 

Shen, X., Zhou, Y., Shi, X. et al. The application of deep learning in abdominal trauma diagnosis by CT imaging. World J Emerg Surg 19, 17 (2024). https://doi.org/10.1186/s13017-024-00546-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarkar, N., Kumagai, M., Meyr, S. et al. An ASER AI/ML expert panel formative user research study for an interpretable interactive splenic AAST grading graphical user interface prototype. Emerg Radiol 31, 167–178 (2024). https://doi.org/10.1007/s10140-024-02202-8

Article  PubMed  PubMed Central  Google Scholar 

Adams-McGavin RC, Tafur M, Vlachou PA, Wu M, Brassil M, Crivellaro P, Lin HM, Gomez D, Colak E. Interrater agreement of CT grading of blunt splenic injuries: does the AAST grading need to be reimagined?. Canadian Association of Radiologists Journal. 2024;75(1):171–7.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif