A multi-center study: development and validation of a BpMRI focused model in transition zone PI-RADS 3 and 4 lesions to detect clinically significant prostate cancer

Turkbey B, Rosenkrantz AB, Haider MA, et al (2019) Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 76:340–351. https://doi.org/10.1016/j.eururo.2019.02.033

Messina E, Pecoraro M, Laschena L, et al (2023) Low cancer yield in PI-RADS 3 upgraded to 4 by dynamic contrast-enhanced MRI: is it time to reconsider scoring categorization? Eur Radiol 33:5828–5839. https://doi.org/10.1007/s00330-023-09605-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yilmaz EC, Shih JH, Belue MJ, et al (2023) Prospective Evaluation of PI-RADS Version 2.1 for Prostate Cancer Detection and Investigation of Multiparametric MRI-derived Markers. Radiology 307:e221309. https://doi.org/10.1148/radiol.221309

Article  PubMed  Google Scholar 

Oerther B, Engel H, Bamberg F, et al (2022) Cancer detection rates of the PI-RADSv2.1 assessment categories: systematic review and meta-analysis on lesion level and patient level. Prostate Cancer Prostatic Dis 25:256–263. https://doi.org/10.1038/s41391-021-00417-1

Article  CAS  PubMed  Google Scholar 

Gholizadeh N (2021) Diagnosis of transition zone prostate cancer by multiparametric MRI: added value of MR spectroscopic imaging with sLASER volume selection

Krishna S, Schieda N, McInnes MD, et al (2019) Diagnosis of transition zone prostate cancer using T2-weighted (T2W) MRI: comparison of subjective features and quantitative shape analysis. Eur Radiol 29:1133–1143. https://doi.org/10.1007/s00330-018-5664-z

Article  PubMed  Google Scholar 

Hoeks CMA, Hambrock T, Yakar D, et al (2013) Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology 266:207–217. https://doi.org/10.1148/radiol.12120281

Article  PubMed  Google Scholar 

Chesnais AL, Niaf E, Bratan F, et al (2013) Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: Evaluation of discriminant criteria at multiparametric MRI. Clinical Radiology 68:e323–e330. https://doi.org/10.1016/j.crad.2013.01.018

Article  CAS  PubMed  Google Scholar 

Bittencourt LK, Guricova K, Zucker I, et al (2022) Risk-based MRI-directed diagnostic pathway outperforms non-risk-based pathways in suspected prostate cancer biopsy-naïve men: a large cohort validation study. Eur Radiol 32:2330–2339. https://doi.org/10.1007/s00330-021-08407-6

Article  CAS  PubMed  Google Scholar 

Chatterjee A, Gallan AJ, He D, et al (2019) Revisiting quantitative multi-parametric MRI of benign prostatic hyperplasia and its differentiation from transition zone cancer. Abdom Radiol (NY) 44:2233–2243. https://doi.org/10.1007/s00261-019-01936-1

Article  PubMed  Google Scholar 

Dikaios N, Alkalbani J, Sidhu HS, et al (2015) Logistic regression model for diagnosis of transition zone prostate cancer on multi-parametric MRI. Eur Radiol 25:523–532. https://doi.org/10.1007/s00330-014-3386-4

Article  PubMed  Google Scholar 

Iyama Y, Nakaura T, Katahira K, et al (2017) Development and validation of a logistic regression model to distinguish transition zone cancers from benign prostatic hyperplasia on multi-parametric prostate MRI. Eur Radiol 27:3600–3608. https://doi.org/10.1007/s00330-017-4775-2

Article  PubMed  Google Scholar 

Hooton TM, Bradley SF, Cardenas DD, et al (2010) Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis 50:625–663. https://doi.org/10.1086/650482

Article  PubMed  Google Scholar 

Chinese Expert Consensus on Prostate Biopsy by the Chinese Urological Association and the China Prostate Cancer Alliance [J]. Chinese Journal of Urology, 2016, 37(4): 241–245.

Beetz NL, Dräger F, Hamm CA, et al (2023) MRI-targeted biopsy cores from prostate index lesions: assessment and prediction of the number needed. Prostate Cancer Prostatic Dis 26:543–551. https://doi.org/10.1038/s41391-022-00599-2

van Leenders GJLH, van der Kwast TH, Grignon DJ, et al (2020) The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am J Surg Pathol 44:e87–e99. https://doi.org/10.1097/PAS.0000000000001497

Lee S, Oh YT, Jung DC, et al (2018) Combined Analysis of Biparametric MRI and Prostate-Specific Antigen Density: Role in the Prebiopsy Diagnosis of Gleason Score 7 or Greater Prostate Cancer. American Journal of Roentgenology 211:W166–W172. https://doi.org/10.2214/AJR.17.19253

Article  PubMed  Google Scholar 

Grey ADR, Scott R, Shah B, et al (2022) Multiparametric ultrasound versus multiparametric MRI to diagnose prostate cancer (CADMUS): a prospective, multicentre, paired-cohort, confirmatory study. The Lancet Oncology 23:428–438. https://doi.org/10.1016/S1470-2045(22)00016-X

Article  PubMed  Google Scholar 

Rosenkrantz AB, Padhani AR, Chenevert TL, et al (2015) Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging 42:1190–1202. https://doi.org/10.1002/jmri.24985

Article  PubMed  Google Scholar 

Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17:857–872. https://doi.org/10.1002/(sici)1097-0258(19980430)17:8%3C857::aid-sim777%3E3.0.co;2-e

Article  CAS  PubMed  Google Scholar 

Karim MN, Reid CM, Tran L, et al (2017) Variable selection methods for multiple regressions influence the parsimony of risk prediction models for cardiac surgery. J Thorac Cardiovasc Surg 153:1128–1135.e3. https://doi.org/10.1016/j.jtcvs.2016.11.028

Article  PubMed  Google Scholar 

Van Calster B, Wynants L, Verbeek JFM, et al (2018) Reporting and Interpreting Decision Curve Analysis: A Guide for Investigators. Eur Urol 74:796–804. https://doi.org/10.1016/j.eururo.2018.08.038

Article  PubMed  PubMed Central  Google Scholar 

Deniffel D, Healy GM, Dong X, et al (2021) Avoiding Unnecessary Biopsy: MRI-based Risk Models versus a PI-RADS and PSA Density Strategy for Clinically Significant Prostate Cancer. Radiology 300:369–379. https://doi.org/10.1148/radiol.2021204112

Article  PubMed  Google Scholar 

Wang S, Kozarek J, Russell R, et al (2024) Diagnostic Performance of Prostate-specific Antigen Density for Detecting Clinically Significant Prostate Cancer in the Era of Magnetic Resonance Imaging: A Systematic Review and Meta-analysis. Eur Urol Oncol 7:189–203. https://doi.org/10.1016/j.euo.2023.08.002

Article  CAS  PubMed  Google Scholar 

Pellegrino F, Stabile A, Sorce G, et al (2023) Added Value of Prostate-specific Antigen Density in Selecting Prostate Biopsy Candidates Among Men with Elevated Prostate-specific Antigen and PI-RADS ≥ 3 Lesions on Multiparametric Magnetic Resonance Imaging of the Prostate: A Systematic Assessment by PI-RADS Score. Eur Urol Focus S2405-4569(23)00223–7. https://doi.org/10.1016/j.euf.2023.10.006

Article  Google Scholar 

Görtz M, Radtke JP, Hatiboglu G, et al (2021) The Value of Prostate-specific Antigen Density for Prostate Imaging-Reporting and Data System 3 Lesions on Multiparametric Magnetic Resonance Imaging: A Strategy to Avoid Unnecessary Prostate Biopsies. Eur Urol Focus 7:325–331. https://doi.org/10.1016/j.euf.2019.11.012

Article  PubMed  Google Scholar 

Lim CS, Abreu-Gomez J, Carrion I, Schieda N (2021) Prevalence of Prostate Cancer in PI-RADS Version 2.1 Transition Zone Atypical Nodules Upgraded by Abnormal DWI: Correlation With MRI-Directed TRUS-Guided Targeted Biopsy. AJR Am J Roentgenol 216:683–690. https://doi.org/10.2214/AJR.20.23932

Article  PubMed  Google Scholar 

Zhou K-P, Huang H-B, Bu C, et al (2023) Sub-differentiation of PI-RADS 3 lesions in TZ by advanced diffusion-weighted imaging to aid the biopsy decision process. Front Oncol 13:1092073. https://doi.org/10.3389/fonc.2023.1092073

Article  PubMed  PubMed Central  Google Scholar 

Soodana-Prakash N, Castillo RP, Reis IM, et al (2019) Validation of dominant and secondary sequence utilization in PI-RADS v2 for classifying prostatic lesions. Can J Urol 26:9763–9768

PubMed  Google Scholar 

de Oliveira Correia ET, Purysko AS, Paranhos BM, et al (2024) PI-RADS Upgrading Rules: Impact on Prostate Cancer Detection and Biopsy Avoidance of MRI-Directed Diagnostic Pathways. AJR Am J Roentgenol 222:e2330611. https://doi.org/10.2214/AJR.23.30611

Article  PubMed  Google Scholar 

Liang Z, Feng T, Zhou Y, et al (2024) Nomograms for predicting clinically significant prostate cancer in men with PI-RADS-3 biparametric magnetic resonance imaging. Am J Cancer Res 14:73–85. https://doi.org/10.62347/XBBI9870

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rudolph MM, Baur ADJ, Cash H, et al (2020) Diagnostic performance of PI-RADS version 2.1 compared to version 2.0 for detection of peripheral and transition zone prostate cancer. Sci Rep 10:15982. https://doi.org/10.1038/s41598-020-72544-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uleri A, Baboudjian M, Tedde A, et al (2023) Is There an Impact of Transperineal Versus Transrectal Magnetic Resonance Imaging-targeted Biopsy in Clinically Significant Prostate Cancer Detection Rate? A Systematic Review and Meta-analysis. Eur Urol Oncol 6:621–628. https://doi.org/10.1016/j.euo.2023.08.001

Article  PubMed 

Comments (0)

No login
gif