Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249.
Gonzalez-Martin A, Harter P, Leary A, Lorusso D, Miller RE, Pothuri B, Ray-Coquard I, Tan DSP, Bellet E, Oaknin A, Ledermann JA (2023) Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 34(10):833–848.
Article PubMed CAS Google Scholar
Forstner R, Sala E, Kinkel K, Spencer JA (2010) ESUR guidelines: ovarian cancer staging and follow-up. Eur Radiol 20(12):2773–2780.
Rizzo S, Del Grande M, Manganaro L, Papadia A, Del Grande F (2020) Imaging before cytoreductive surgery in advanced ovarian cancer patients. Int J Gynecol Cancer 30(1):133–138.
Stein EB, Roseland ME, Shampain KL, Wasnik AP, Maturen KE (2021) Contemporary guidelines for adnexal mass imaging: a 2020 update. Abdom Radiol 46(5):2127–2139.
Fernandes MC, Nikolovski I, Long Roche K, Lakhman Y (2022) CT of ovarian cancer for primary treatment planning: what the surgeon needs to know-Radiology in training. Radiology 304(3):516–526.
Oliveira L, Horvat N, Andrieu PIC, Panizza PSB, Cerri GG, Viana PCC (2021) Ovarian cancer staging: what the surgeon needs to know. Br J Radiol 94(1125):20210091.
Article PubMed PubMed Central Google Scholar
Akkaya H, Demirel E, Dilek O, Dalgalar Akkaya T, Ozturkcu T, Karaaslan Erisen K, Tas ZA, Bas S, Gulek B (2025) Ovarian-adnexal reporting and data system MRI scoring: diagnostic accuracy, interobserver agreement, and applicability to machine learning. Br J Radiol 98(1166):254–261.
Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ (2023) Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol 41(25):4065–4076.
Du Bois A, Reuss A, Pujade-Lauraine E, Harter P, Ray-Coquard I, Pfisterer J (2009) Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials. Cancer 115(6):1234–1244.
Article PubMed CAS Google Scholar
Polterauer S, Vergote I, Concin N, Braicu I, Chekerov R, Mahner S, Woelber L, Cadron I, Van Gorp T, Zeillinger R, Castillo-Tong DC, Sehouli J (2012) Prognostic value of residual tumor size in patients with epithelial ovarian cancer FIGO stages IIA-IV: analysis of the OVCAD data. Int J Gynecol Cancer 22(3):380–385.
Qin L, Huang H, Chen M, Liang Y, Wang H (2018) Clinical study of a CT evaluation model combined with serum CA125 in predicting the treatment of newly diagnosed advanced epithelial ovarian cancer. J Ovarian Res 11(1):49.
Article PubMed PubMed Central Google Scholar
Fuso L, Ferrero A, Vietti E, Petracchini M, Mineccia M, Villa M, Menato G (2019) Development of a preoperative computed tomography score for the management of advanced epithelial ovarian cancer. Int J Gynecol Cancer 29(3):599–604.
Suidan RS, Ramirez PT, Sarasohn DM, Teitcher JB, Iyer RB, Zhou Q, Iasonos A, Denesopolis J, Zivanovic O, Long Roche KC, Sonoda Y, Coleman RL, Abu-Rustum NR, Hricak H, Chi DS (2017) A multicenter assessment of the ability of preoperative computed tomography scan and CA-125 to predict gross residual disease at primary debulking for advanced epithelial ovarian cancer. Gynecol Oncol 145(1):27–31.
Article PubMed PubMed Central Google Scholar
Wang Z, Lv MY, Huang YX (2020) Effects of low-dose X-ray on cell growth, membrane permeability, DNA damage and gene transfer efficiency. Dose Response 18(4):1559325820962615.
Article PubMed PubMed Central CAS Google Scholar
Geyer LL, Schoepf UJ, Meinel FG, Nance JW, Jr., Bastarrika G, Leipsic JA, Paul NS, Rengo M, Laghi A, De Cecco CN (2015) State of the art: iterative CT reconstruction techniques. Radiology 276(2):339–357.
Li W, You Y, Zhong S, Shuai T, Liao K, Yu J, Zhao J, Li Z, Lu C (2022) Image quality assessment of artificial intelligence iterative reconstruction for low dose aortic CTA: a feasibility study of 70 kVp and reduced contrast medium volume. Eur J Radiol 149:110221.
Gong H, Peng L, Du X, An J, Peng R, Guo R, Ma X, Xiong S, Ma Q, Zhang G, Ma J (2024) Artificial intelligence iterative reconstruction in computed tomography angiography: an evaluation on pulmonary arteries and aorta with routine dose settings. J Comput Assist Tomogr 48(2):244–250.
Li J, Meng T, Zhang G, Yu X, Lu Z, Zhang W (2024) Artificial intelligence iterative reconstruction in abdominal CT of patients with irregular arm positioning: a case-by-case evaluation. Acta Radiol 65(8):907–912.
Yang L, Liu H, Han J, Xu S, Zhang G, Wang Q, Du Y, Yang F, Zhao X, Shi G (2023) Ultra-low-dose CT lung screening with artificial intelligence iterative reconstruction: evaluation via automatic nodule-detection software. Clin Radiol 78(7):525–531.
Article PubMed CAS Google Scholar
You Y, Zhong S, Zhang G, Wen Y, Guo D, Li W, Li Z (2024) Exploring the low-dose limit for focal hepatic lesion detection with a deep learning-based CT reconstruction algorithm: a simulation study on patient images. J Imaging Inform Med 37(5):2089–2098.
Article PubMed PubMed Central Google Scholar
Li J, Zhu J, Zou Y, Zhang G, Zhu P, Wang N, Xie P (2024) Diagnostic CT of colorectal cancer with artificial intelligence iterative reconstruction: a clinical evaluation. Eur J Radiol 171:111301.
Ren J, Zhao J, Wang Y, Xu M, Liu XY, Jin ZY, He YL, Li Y, Xue HD (2023) Value of deep-learning image reconstruction at submillisievert CT for evaluation of the female pelvis. Clin Radiol 78(11):e881-e888.
Singh R, Digumarthy SR, Muse VV, Kambadakone AR, Blake MA, Tabari A, Hoi Y, Akino N, Angel E, Madan R, Kalra MK (2020) Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT. AJR Am J Roentgenol 214(3):566–573.
Nougaret S, Lakhman Y, Molinari N, Feier D, Scelzo C, Vargas HA, Sosa RE, Hricak H, Soslow RA, Grisham RN, Sala E (2018) CT features of ovarian tumors: defining key differences between serous borderline tumors and low-grade serous carcinomas. AJR Am J Roentgenol 210(4):918–926.
Article PubMed PubMed Central Google Scholar
Jensen CT, Gupta S, Saleh MM, Liu X, Wong VK, Salem U, Qiao W, Samei E, Wagner-Bartak NA (2022) Reduced-dose deep learning reconstruction for abdominal CT of liver metastases. Radiology 303(1):90–98.
Urase Y, Nishio M, Ueno Y, Kono AK, Sofue K, Kanda T, Maeda T, Nogami M, Hori M, Murakami T (2020) Simulation Study of Low-Dose Sparse-Sampling CT with Deep Learning-Based Reconstruction: Usefulness for Evaluation of Ovarian Cancer Metastasis. Appl Sci-Basel 10(13):4446.
Nasser S, Lazaridis A, Evangelou M, Jones B, Nixon K, Kyrgiou M, Gabra H, Rockall A, Fotopoulou C (2016) Correlation of pre-operative CT findings with surgical & histological tumor dissemination patterns at cytoreduction for primary advanced and relapsed epithelial ovarian cancer: a retrospective evaluation. Gynecol Oncol 143(2):264–269.
Article PubMed CAS Google Scholar
Onda T, Tanaka YO, Kitai S, Manabe T, Ishikawa M, Hasumi Y, Miyamoto K, Ogawa G, Satoh T, Saito T, Kasamatsu T, Nakanishi T (2021) Stage III disease of ovarian, tubal and peritoneal cancers can be accurately diagnosed with pre-operative CT. Japan Clinical Oncology Group Study JCOG0602. Jpn J Clin Oncol 51(2):205–212.
Yuan Y, Gu ZX, Tao XF, Liu SY (2012) Computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with ovarian cancer: a meta-analysis. Eur J Radiol 81(5):1002–1006.
Lyu P, Liu N, Harrawood B, Solomon J, Wang H, Chen Y, Rigiroli F, Ding Y, Schwartz FR, Jiang H, Lowry C, Wang L, Samei E, Gao J, Marin D (2023) Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely? Eur Radiol 33(3):1629–1640.
Article PubMed CAS Google Scholar
Kanan A, Pereira B, Hordonneau C, Cassagnes L, Pouget E, Tianhoun LA, Chauveau B, Magnin B (2024) Deep learning CT reconstruction improves liver metastases detection. Insights Imaging 15(1):167.
Comments (0)