MRI-based radiomics for differentiating high-grade from low-grade clear cell renal cell carcinoma: a systematic review and meta-analysis

Padala SA, Barsouk A, Thandra KC, Saginala K, Mohammed A, Vakiti A, et al. Epidemiology of Renal Cell Carcinoma. World J Oncol. 2020;11(3):79-87.

Article  PubMed  PubMed Central  Google Scholar 

Delahunt B, Cheville JC, Martignoni G, Humphrey PA, Magi-Galluzzi C, McKenney J, et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol. 2013;37(10):1490-504.

Article  PubMed  Google Scholar 

Novara G, Martignoni G, Artibani W, Ficarra V. Grading systems in renal cell carcinoma. J Urol. 2007;177(2):430-6.

Article  PubMed  Google Scholar 

Minervini A, Lilas L, Minervini R, Selli C. Prognostic value of nuclear grading in patients with intracapsular (pT1-pT2) renal cell carcinoma. Long-term analysis in 213 patients. Cancer. 2002;94(10):2590–5.

Patel HD, Johnson MH, Pierorazio PM, Sozio SM, Sharma R, Iyoha E, et al. Diagnostic Accuracy and Risks of Biopsy in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma: Systematic Review of the Literature. J Urol. 2016;195(5):1340-7.

Article  PubMed  PubMed Central  Google Scholar 

Blumenfeld AJ, Guru K, Fuchs GJ, Kim HL. Percutaneous biopsy of renal cell carcinoma underestimates nuclear grade. Urology. 2010;76(3):610-3.

Article  PubMed  Google Scholar 

Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology. 2019;30(5):706-20.

Article  CAS  PubMed  Google Scholar 

Cornelis F, Tricaud E, Lasserre AS, Petitpierre F, Bernhard JC, Le Bras Y, et al. Multiparametric magnetic resonance imaging for the differentiation of low and high grade clear cell renal carcinoma. Eur Radiol. 2015;25(1):24-31.

Article  CAS  PubMed  Google Scholar 

Goyal A, Sharma R, Bhalla AS, Gamanagatti S, Seth A, Iyer VK, et al. Diffusion-weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and histological subtype. Acta Radiol. 2012;53(3):349-58.

Article  PubMed  Google Scholar 

Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441-6.

Article  PubMed  PubMed Central  Google Scholar 

Ahmadzadeh AM, Lomer NB, Ashoobi MA, Bathla G, Sotoudeh H. MRI-derived radiomics and end-to-end deep learning models for predicting glioma ATRX status: a systematic review and meta-analysis of diagnostic test accuracy studies. Clinical Imaging. 2024:110386.

Wang Q, Wang A, Wu X, Hu X, Bai G, Fan Y, et al. Radiomics models for preoperative prediction of the histopathological grade of hepatocellular carcinoma: A systematic review and radiomics quality score assessment. Eur J Radiol. 2023;166:111015.

Article  PubMed  Google Scholar 

Tavanaei R, Akhlaghpasand M, Alikhani A, Hajikarimloo B, Ansari A, Yong RL, et al. Performance of Radiomics-based machine learning and deep learning-based methods in the prediction of tumor grade in meningioma: a systematic review and meta-analysis. Neurosurg Rev. 2025;48(1):78.

Article  PubMed  Google Scholar 

Lomer NB, Ashoobi MA, Ahmadzadeh AM, Sotoudeh H, Tabari A, Torigian DA. MRI-based radiomics for predicting prostate cancer grade groups: a systematic review and meta-analysis of diagnostic test accuracy studies. Academic radiology. 2024.

Ahmadzadeh AM, Lomer NB, Torigian DA. Radiomics and machine learning models for diagnosing microvascular invasion in cholangiocarcinoma: a systematic review and meta-analysis of diagnostic test accuracy studies. Clinical Imaging. 2025;121:110456.

Article  PubMed  Google Scholar 

Broomand Lomer N, Nouri A, Singh R, Asgari S. Diagnostic performance of radiomics models for preoperative prediction of microsatellite instability status in endometrial cancer: a systematic review and meta-analysis. Abdominal Radiology. 2025.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj. 2021;372:n71.

Article  PubMed  PubMed Central  Google Scholar 

The EndNote Team. EndNote. EndNote 21 ed. Philadelphia, PA: Clarivate; 2013.

Kocak B, Akinci D’Antonoli T, Mercaldo N, Alberich-Bayarri A, Baessler B, Ambrosini I, et al. METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII. Insights into Imaging. 2024;15(1):8.

Article  PubMed  PubMed Central  Google Scholar 

Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Annals of Internal Medicine. 2011;155(8):529-36.

Article  PubMed  Google Scholar 

Doebler P. Mada: meta-analysis of diagnostic accuracy. R package version 05. 2015;7:1419.

Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software. 2010;36(3):1 - 48.

Article  Google Scholar 

Canty A. boot: Bootstrap R (S-Plus) functions. (No Title). 2021.

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539-58.

Article  PubMed  Google Scholar 

Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882-93.

Article  PubMed  Google Scholar 

Chen R, Su Q, Li Y, Shen P, Zhang J, Tan Y. Multi-sequence MRI-based radiomics model to preoperatively predict the WHO/ISUP grade of clear Cell Renal Cell Carcinoma: a two-center study. BMC Cancer. 2024;24(1):1176.

Article  PubMed  PubMed Central  Google Scholar 

Chen XY, Zhang Y, Chen YX, Huang ZQ, Xia XY, Yan YX, et al. MRI-Based Grading of Clear Cell Renal Cell Carcinoma Using a Machine Learning Classifier. Front Oncol. 2021;11:708655.

Article  PubMed  PubMed Central  Google Scholar 

Cui E, Li Z, Ma C, Li Q, Lei Y, Lan Y, et al. Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics. European Radiology. 2020;30(5):2912-21.

Article  PubMed  Google Scholar 

Dwivedi DK, Xi Y, Kapur P, Madhuranthakam AJ, Lewis MA, Udayakumar D, et al. Magnetic Resonance Imaging Radiomics Analyses for Prediction of High-Grade Histology and Necrosis in Clear Cell Renal Cell Carcinoma: Preliminary Experience. Clin Genitourin Cancer. 2021;19(1):12-21.e1.

Article  PubMed  Google Scholar 

Goyal A, Razik A, Kandasamy D, Seth A, Das P, Ganeshan B, et al. Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study. Abdom Radiol (NY). 2019;44(10):3336-49.

Article  PubMed  Google Scholar 

Li Q, Liu YJ, Dong D, Bai X, Huang QB, Guo AT, et al. Multiparametric MRI Radiomic Model for Preoperative Predicting WHO/ISUP Nuclear Grade of Clear Cell Renal Cell Carcinoma. J Magn Reson Imaging. 2020;52(5):1557-66.

Article  CAS  PubMed  Google Scholar 

Pan L, Chen M, Sun J, Jin P, Ding J, Cai P, et al. Prediction of Fuhrman grade of renal clear cell carcinoma by multimodal MRI radiomics: a retrospective study. Clin Radiol. 2024;79(2):e273-e81.

Article  CAS  PubMed  Google Scholar 

Purkayastha S, Zhao Y, Wu J, Hu R, McGirr A, Singh S, et al. Differentiation of low and high grade renal cell carcinoma on routine MRI with an externally validated automatic machine learning algorithm. Sci Rep. 2020;10(1):19503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sim KC, Han NY, Cho Y, Sung DJ, Park BJ, Kim MJ, et al. Machine Learning-Based Magnetic Resonance Radiomics Analysis for Predicting Low- and High-Grade Clear Cell Renal Cell Carcinoma. J Comput Assist Tomogr. 2023;47(6):873-81.

Article  PubMed  Google Scholar 

Stanzione A, Ricciardi C, Cuocolo R, Romeo V, Petrone J, Sarnataro M, et al. MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma: a Machine Learning Exploratory Study. J Digit Imaging. 2020;33(4):879-87.

Article  PubMed  PubMed Central  Google Scholar 

Sun J, Pan L, Zha T, Xing W, Chen J, Duan S. The role of MRI texture analysis based on susceptibility-weighted imaging in predicting Fuhrman grade of clear cell renal cell carcinoma. Acta Radiol. 2021;62(8):1104-11.

Article  PubMed  Google Scholar 

Yang Y, Zhang Z, Zhang H, Liu M, Zhang J. Machine learning-based multiparametric MRI radiomics nomogram for predicting WHO/ISUP nuclear grading of clear cell renal cell carcinoma. Front Oncol. 2024;14:1467775.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zahergivar A, Yazdian Anari P, Mendhiratta N, Lay N, Singh S, Dehghani Firouzabadi F, et al. Non-Invasive Tumor Grade Evaluation in Von Hippel-Lindau-Associated Clear Cell Renal Cell Carcinoma: A Magnetic Resonance Imaging-Based Study. J Magn Reson Imaging. 2024;60(3):1076-81.

Article 

Comments (0)

No login
gif