Major depressive disorder recognition based on electronic handwriting recorded in psychological tasks

Malhi GS, Mann JJ. Depression Lancet. 2018;392(10161):2299–312.

Article  PubMed  Google Scholar 

GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789-858.https://doi.org/10.1016/S0140-6736(18)32279-7. Erratum in: Lancet. 2019;393(10190):e44. https://doi.org/10.1016/S0140-6736(18)32279-7.

Chen R, An J, Ou J. Suicidal behaviour among children and adolescents in China. Lancet Child Adolesc Health. 2018;2(8):551–3.

Article  PubMed  Google Scholar 

Hawton K, Saunders KEA, O’Connor RC. Self-harm and suicide in adolescents. Lancet. 2012;379(9834):2373–82.

Article  PubMed  Google Scholar 

Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev. 2016;64:101–33.

Article  CAS  PubMed  Google Scholar 

Klooster D, Voetterl H, Baeken C, Arns M. Evaluating Robustness of Brain Stimulation Biomarkers for Depression: A Systematic Review of Magnetic Resonance Imaging and Electroencephalography Studies. Biol Psychiatry. 2024;95(6):553–63.

Article  CAS  PubMed  Google Scholar 

Binnewies J, Nawijn L, van Tol M-J, van der Wee NJA, Veltman DJ, Penninx BWJH. Associations between depression, lifestyle and brain structure: A longitudinal MRI study. Neuroimage. 2021;231: 117834.

Article  PubMed  Google Scholar 

Xu M, Li X, Teng T, Huang Y, Liu M, Long Y, et al. Reconfiguration of Structural and Functional Connectivity Coupling in Patient Subgroups With Adolescent Depression. JAMA Netw Open. 2024;7(3): e241933.

Article  PubMed  PubMed Central  Google Scholar 

Cavaleri D, Bartoli F, Capogrosso CA, Guzzi P, Moretti F, Riboldi I, et al. Blood concentrations of neopterin and biopterin in subjects with depression: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2023;120: 110633.

Article  CAS  PubMed  Google Scholar 

Carotenuto A, Valsasina P, Preziosa P, Mistri D, Filippi M, Rocca MA. Monoaminergic network abnormalities: a marker for multiple sclerosis-related fatigue and depression. J Neurol Neurosurg Psychiatry. 2023;94(2):94–101. https://doi.org/10.1136/jnnp-2022-330109.

Article  PubMed  Google Scholar 

Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry. 2022;27(1):445–65.

Article  PubMed  Google Scholar 

Jespersen A, Yilmaz Z, Vilhjálmsson BJ. Harnessing the Power of Population Cohorts to Study the Relationship Between Endocrine-Metabolic Disorders and Depression. Am J Psychiatry. 2022;179(11):788–90.

Article  PubMed  Google Scholar 

Snigdha S, Ha K, Tsai P, Dinan TG, Bartos JD, Shahid M. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol Ther. 2022;231: 107978.

Article  CAS  PubMed  Google Scholar 

Rasmussen M-LH, Poulsen GJ, Videbech P, Wohlfahrt J, Melbye M. Endocrine disease history and the risk of postpartum depression. Br J Psychiatry. 2023;222(3):119–24.

Article  PubMed  Google Scholar 

Winter NR, Blanke J, Leenings R, Ernsting J, Fisch L, Sarink K, et al. A Systematic Evaluation of Machine Learning-Based Biomarkers for Major Depressive Disorder. JAMA Psychiat. 2024;81(4):386–95.

Article  Google Scholar 

Wasserzug Y, Degani Y, Bar-Shaked M, Binyamin M, Klein A, Hershko S, et al. Development and validation of a machine learning-based vocal predictive model for major depressive disorder. J Affect Disord. 2023;325:627–32.

Article  PubMed  Google Scholar 

Schultebraucks K, Yadav V, Shalev AY, Bonanno GA, Galatzer-Levy IR. Deep learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood. Psychol Med. 2022;52(5):957–67.

Article  PubMed  Google Scholar 

Kim AY, Jang EH, Lee S-H, Choi K-Y, Park JG, Shin H-C. Automatic Depression Detection Using Smartphone-Based Text-Dependent Speech Signals: Deep Convolutional Neural Network Approach. J Med Internet Res. 2023;25: e34474.

Article  PubMed  PubMed Central  Google Scholar 

König A, Tröger J, Mallick E, Mina M, Linz N, Wagnon C, et al. Detecting subtle signs of depression with automated speech analysis in a non-clinical sample. BMC Psychiatry. 2022;22(1):830.

Article  PubMed  PubMed Central  Google Scholar 

Ettore E, Müller P, Hinze J, Riemenschneider M, Benoit M, Giordana B, et al. Digital Phenotyping for Differential Diagnosis of Major Depressive Episode: Narrative Review. JMIR Ment Health. 2023;10: e37225.

Article  PubMed  PubMed Central  Google Scholar 

Xie F, Zhou L, Hu Q, Zeng L, Wei Y, Tang X, et al. Cardiovascular variations in patients with major depressive disorder versus bipolar disorder. J Affect Disord. 2023;341:219–27.

Article  CAS  PubMed  Google Scholar 

Li C, Yang Y, Wang W, Li H, Mai Y, Zhao J. Measurement of differential activation by heart-rate-variability for youth MDD discrimination. J Affect Disord. 2025;376:169–76.

Article  CAS  PubMed  Google Scholar 

Li X, Zhang X, Zhu J, Mao W, Sun S, Wang Z, et al. Depression recognition using machine learning methods with different feature generation strategies. Artif Intell Med. 2019;99: 101696.

Article  PubMed  Google Scholar 

Zhou Y, Han W, Yao X, Xue J, Li Z, Li Y. Developing a machine learning model for detecting depression, anxiety, and apathy in older adults with mild cognitive impairment using speech and facial expressions: A cross-sectional observational study. Int J Nurs Stud. 2023;146: 104562.

Article  PubMed  Google Scholar 

Yasin S, Othmani A, Raza I, Hussain SA. Machine learning based approaches for clinical and non-clinical depression recognition and depression relapse prediction using audiovisual and EEG modalities: A comprehensive review. Comput Biol Med. 2023;159: 106741.

Article  CAS  PubMed  Google Scholar 

Liberg B, Rahm C. The functional anatomy of psychomotor disturbances in major depressive disorder. Front Psychiatry. 2015;6:34.

Article  PubMed  PubMed Central  Google Scholar 

Choi KW, Chen C-Y, Stein MB, Klimentidis YC, Wang M-J, Koenen KC, et al. Assessment of Bidirectional Relationships Between Physical Activity and Depression Among Adults: A 2-Sample Mendelian Randomization Study. JAMA Psychiat. 2019;76(4):399–408.

Article  Google Scholar 

Corfield EC, Martin NG, Nyholt DR. Co-occurrence and symptomatology of fatigue and depression. Compr Psychiatry. 2016;71:1–10. https://doi.org/10.1016/j.comppsych.2016.08.004.

Article  PubMed  Google Scholar 

Deng M-G, Liu F, Liang Y, Wang K, Nie J-Q, Liu J. Association between frailty and depression: a bidirectional Mendelian randomization study. Sci Adv. 2023;9(38):3902.

Article  Google Scholar 

Lin S, Huang L, Luo Z-C, Li X, Jin S-Y, Du Z-J, et al. The ATP Level in the Medial Prefrontal Cortex Regulates Depressive-like Behavior via the Medial Prefrontal Cortex-Lateral Habenula Pathway. Biol Psychiatry. 2022;92(3):179–92.

Article  CAS  PubMed  Google Scholar 

Cao X, Li L-P, Wang Q, Wu Q, Hu H-H, Zhang M, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013;19(6):773–7.

Article  CAS  PubMed  Google Scholar 

Bucci W. Psychoanalysis and cognitive science: A multiple code theory. New York, NY, US: Guilford Press; 1997. xiv, 362-xiv, p.

Google Scholar 

Pennebaker JW, Francis ME. Cognitive, emotional, and language processes in disclosure. Cognition and Emotion. 1996;10(6):601–26. https://doi.org/10.1080/026999396380079.

Article  Google Scholar 

Damasio AR. Emotion and the Human Brain. Ann N Y Acad Sci. 2001;935(1):101–6.

Article  Google Scholar 

Mariani R, Di Trani M, Negri A, Tambelli R. Linguistic analysis of autobiographical narratives in unipolar and bipolar mood disorders in light of multiple code theory. J Affect Disord. 2020;273:24–31.

Article 

Comments (0)

No login
gif