Olang O, Mohseni S, Shahabinezhad A, Hamidianshirazi Y, Goli A, Abolghasemian M et al (2024) Artificial intelligence-based models for prediction of mortality in ICU patients: a scoping review. J Intensive Care Med. https://doi.org/10.1177/08850666241277134
Ryan L, Lam C, Mataraso S, Allen A, Green-Saxena A, Pellegrini E et al (2020) Mortality prediction model for the triage of COVID-19, pneumonia, and mechanically ventilated ICU patients: a retrospective study. Ann Med Surg (Lond). 59:207–16. https://doi.org/10.1016/j.amsu.2020.09.044
Article PubMed PubMed Central Google Scholar
Kumar AA (2022) Mortality prediction in the ICU: the daunting task of predicting the unpredictable. Indian J Crit Care Med. 26(1):13–4. https://doi.org/10.5005/jp-journals-10071-24063
Article PubMed PubMed Central Google Scholar
Xia J, Pan S, Zhu M, Cai G, Yan M, Su Q et al (2019) A long short-term memory ensemble approach for improving the outcome prediction in intensive care unit. Comput Math Methods Med. 2019:8152713. https://doi.org/10.1155/2019/8152713
Article PubMed PubMed Central Google Scholar
Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13(10):818–829
Article CAS PubMed Google Scholar
Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 22(7):707–10. https://doi.org/10.1007/bf01709751
Article CAS PubMed Google Scholar
Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 270(24):2957–63. https://doi.org/10.1001/jama.270.24.2957
Tian Y, Yao Y, Zhou J, Diao X, Chen H, Cai K et al (2021) Dynamic APACHE II score to predict the outcome of intensive care unit patients. Front Med (Lausanne). 8:744907. https://doi.org/10.3389/fmed.2021.744907
Yuan Q, Li W, Yang K, Guo J, Zheng Y (2024) Predictive mortality of the prognostic nutritional index combined with APACHE II Score for critically ill tuberculosis patients. Am J Trop Med Hyg. 111(5):1027–33. https://doi.org/10.4269/ajtmh.23-0661
Article CAS PubMed Google Scholar
Lopez Bernal J, Soumerai S, Gasparrini A (2018) A methodological framework for model selection in interrupted time series studies. J Clin Epidemiol. 103:82–91. https://doi.org/10.1016/j.jclinepi.2018.05.026
Article CAS PubMed Google Scholar
Perotte A, Ranganath R, Hirsch JS, Blei D, Elhadad N (2015) Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis. J Am Med Inform Assoc. 22(4):872–80. https://doi.org/10.1093/jamia/ocv024
Article PubMed PubMed Central Google Scholar
Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG (2018) An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med. 46(4):547–53. https://doi.org/10.1097/ccm.0000000000002936
Article PubMed PubMed Central Google Scholar
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature. 521(7553):436–44. https://doi.org/10.1038/nature14539
Article CAS PubMed Google Scholar
Iima M, Mizuno R, Kataoka M, Tsuji K, Yamazaki T, Minami A et al (2024) Deep learning applied to diffusion-weighted imaging for differentiating malignant from benign breast tumors without lesion segmentation. Radiol Artif Intell. https://doi.org/10.1148/ryai.240206
Zhang N, Zhang H, Li S, Wu W, Luo P, Liu Z et al (2024) Uncovering the predictive and immunomodulatory potential of transient receptor potential melastatin family-related CCNE1 in pan-cancer. Mol Cancer. 23(1):258. https://doi.org/10.1186/s12943-024-02169-7
Article CAS PubMed PubMed Central Google Scholar
Zhou Y, Mei S, Wang J, Xu Q, Zhang Z, Qin S et al (2024) Development and validation of a deep learning-based framework for automated lung CT segmentation and acute respiratory distress syndrome prediction: a multicenter cohort study. EClinicalMedicine. 75:102772. https://doi.org/10.1016/j.eclinm.2024.102772
Article PubMed PubMed Central Google Scholar
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput. 9(8):1735–80. https://doi.org/10.1162/neco.1997.9.8.1735
Article CAS PubMed Google Scholar
Ge W, Huh JW, Park YR, Lee JH, Kim YH, Turchin A (2018) An interpretable ICU mortality prediction model based on logistic regression and recurrent neural networks with LSTM units. AMIA Annu Symp Proc. 2018:460–9
PubMed PubMed Central Google Scholar
Gandin I, Scagnetto A, Romani S, Barbati G (2021) Interpretability of time-series deep learning models: a study in cardiovascular patients admitted to Intensive care unit. J Biomed Inform. 121:103876. https://doi.org/10.1016/j.jbi.2021.103876
Wernly B, Mamandipoor B, Baldia P, Jung C, Osmani V (2021) Machine learning predicts mortality in septic patients using only routinely available ABG variables: a multi-centre evaluation. Int J Med Inform. 145:104312. https://doi.org/10.1016/j.ijmedinf.2020.104312
Awad A, Bader-El-Den M, McNicholas J, Briggs J (2017) Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Int J Med Inform. 108:185–95. https://doi.org/10.1016/j.ijmedinf.2017.10.002
Zhu Y, Zhang R, Ye X, Liu H, Wei J (2022) SAPS III is superior to SOFA for predicting 28-day mortality in sepsis patients based on Sepsis 3.0 criteria. Int J Infect Dis. 114:135–41. https://doi.org/10.1016/j.ijid.2021.11.015
Article CAS PubMed Google Scholar
Zhang YY, Zhou XB, Wang QZ, Zhu XY (2017) Quality of reporting of multivariable logistic regression models in Chinese clinical medical journals. Medicine (Baltimore). 96(21):e6972. https://doi.org/10.1097/md.0000000000006972
Article PubMed PubMed Central Google Scholar
He J, Lin J, Duan M (2021) Application of machine learning to predict acute kidney disease in patients with sepsis associated acute kidney injury. Front Med (Lausanne). 8:792974. https://doi.org/10.3389/fmed.2021.792974
Article PubMed PubMed Central Google Scholar
Song X, Liu X, Liu F, Wang C (2021) Comparison of machine learning and logistic regression models in predicting acute kidney injury: a systematic review and meta-analysis. Int J Med Inform. 151:104484. https://doi.org/10.1016/j.ijmedinf.2021.104484
Comments (0)