Tattersall RB, Fajans SS, Arbor A. A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes. 1975;24(1):44–53.
Article CAS PubMed Google Scholar
Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504–8.
Article CAS PubMed Google Scholar
Yahaya TO, Ufuoma SB. Genetics and Pathophysiology of Maturity-onset Diabetes of the Young (MODY): a review of current trends. Oman Med J. 2020;35(3):e126.
Article CAS PubMed PubMed Central Google Scholar
Hoffman LS, Fox TJ, Anastasopoulou C, Jialal I. Maturity Onset Diabetes in the Young. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 May 28]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK532900/
Firdous P, Nissar K, Masoodi S, Ganai B. Biomarkers: tools for discriminating MODY from other diabetic subtypes. Indian J Endocrinol Metab. 2022;26(3):223. https://doi.org/10.4103/ijem.ijem_266_21.
Article CAS PubMed PubMed Central Google Scholar
McDonald TJ, Shields BM, Lawry J, Owen KR, Gloyn AL, Ellard S, et al. High-sensitivity CRP discriminates HNF1A-MODY from other subtypes of diabetes. Diabetes Care. 2011;8:1860–2.
Besser REJ, Ludvigsson J, Jones AG, McDonald TJ, Shields BM, Knight BA, et al. Urine C-Peptide creatinine ratio is a noninvasive alternative to the mixed-meal tolerance test in children and adults with Type 1 Diabetes. Diabetes Care. 2011;34(3):607–9.
Article CAS PubMed PubMed Central Google Scholar
Ludvigsson J, Carlsson A, Forsander G, Ivarsson S, Kockum I, Lernmark Å, et al. C-peptide in the classification of diabetes in children and adolescents. Pediatr Diabetes. 2012;13(1):45–50. https://doi.org/10.1111/j.1399-5448.2011.00807.x.
Article CAS PubMed Google Scholar
Harjutsalo V, Lammi N, Karvonen M, Groop PH. Age at onset of Type 1 Diabetes in parents and recurrence risk in offspring. Diabetes. 2010;59(1):210–4.
Article CAS PubMed Google Scholar
Naylor RN, Greeley SAW, Bell GI, Philipson LH. Genetics and pathophysiology of neonatal diabetes mellitus. J Diabetes Investig. 2011;2(3):158–69.
Article CAS PubMed PubMed Central Google Scholar
Rees K, Reed A, Banerjee A, Pasupathy D. Maturity onset diabetes of the young in pregnancy: diagnosis, management and prognosis of MODY in pregnancy. Obstet Gynaecol Reprod Med. 2017;27(5):144–7.
Auble B, Dey J. Monogenetic etiologies of diabetes. Med Clin North Am. 2024;108(1):15–26.
Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, et al. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature. 1996;384(6608):458–60.
Article CAS PubMed Google Scholar
Nkonge KM, Nkonge DK, Nkonge TN. The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol. 2020;6(1):20.
Article PubMed PubMed Central Google Scholar
Valkovicova T, Skopkova M, Stanik J, Gasperikova D. Novel insights into genetics and clinics of the HNF1A-MODY. Endocr Regul. 2019;53(2):110–34. https://doi.org/10.2478/enr-2019-0013.
Singh R, Ashish A, Shah A, Shekhar PS. Interaction between oxidative stress and diabetes: a mini-review. J Diabetes Metab Disord Control. 2020;7(2):58–61.
Macfarlane WM, Frayling TM, Ellard S, Evans JC, Allen LIS, Bulman MP, et al. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Invest. 1999;104(9):R33–9.
Article CAS PubMed PubMed Central Google Scholar
Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet. 1999;23(3):323–8.
Article CAS PubMed Google Scholar
Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, Dina C, Hamid YH, Joly E, et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci. 2005;102(13):4807–12. https://doi.org/10.1073/pnas.0409177102.
Article CAS PubMed PubMed Central Google Scholar
Lomberk G, Grzenda A, Mathison A, Escande C, Zhang JS, Calvo E, et al. Krüppel-like Factor 11 regulates the expression of metabolic genes via an evolutionarily conserved protein interaction domain functionally disrupted in maturity onset diabetes of the young. J Biol Chem. 2013;288(24):17745–58.
Article CAS PubMed Google Scholar
Smith SB, Ee HC, Conners JR, German MS. Paired-Homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol. 1999;19(12):8272–80. https://doi.org/10.1128/MCB.19.12.8272.
Article CAS PubMed PubMed Central Google Scholar
Plengvidhya N, Kooptiwut S, Songtawee N, Doi A, Furuta H, Nishi M, et al. PAX4 Mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab. 2007;92(7):2821–6. https://doi.org/10.1210/jc.2006-1927.
Article CAS PubMed Google Scholar
Borowiec M, Liew CW, Thompson R, Boonyasrisawat W, Hu J, Mlynarski WM, et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and β-cell dysfunction. Proc Natl Acad Sci. 2009;106(34):14460–5. https://doi.org/10.1073/pnas.0906474106.
Article PubMed PubMed Central Google Scholar
Saitou N, editor. Evolution of the Human Genome I [Internet]. Tokyo: Springer Japan; 2017 [cited 2024 Jun 2]. (Evolutionary Studies). Available from: http://link.springer.com/https://doi.org/10.1007/978-4-431-56603-8
Valentínová L, Beer NL, Staník J, Tribble ND, Van De Bunt M, Hučková M, et al. Identification and functional characterisation of novel glucokinase mutations causing maturity-onset diabetes of the young in Slovakia. PLoS ONE. 2012;7(4):e34541. https://doi.org/10.1371/journal.pone.0034541.
Article CAS PubMed PubMed Central Google Scholar
Cho EH, Min JW, Choi SS, Choi HS, Kim SW. Identification of maturity-onset diabetes of the young caused by glucokinase mutations detected using whole-exome sequencing. Endocrinol Metab. 2017;32(2):296. https://doi.org/10.3803/EnM.2017.32.2.296.
De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, et al. Update of variants identified in the pancreatic β-cell K ATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat. 2020;41(5):884–905. https://doi.org/10.1002/humu.23995.
Article CAS PubMed Google Scholar
Skoczek D, Dulak J, Kachamakova-Trojanowska N. Maturity onset diabetes of the young-new approaches for disease modelling. Int J Mol Sci. 2021;22(14):7553.
Article CAS PubMed PubMed Central Google Scholar
Stanik J, Dusatkova P, Cinek O, Valentinova L, Huckova M, Skopkova M, et al. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia. 2014;57(3):480–4.
Article CAS PubMed Google Scholar
Firdous P, Nissar K, Ali S, Ganai BA, Shabir U, Hassan T, et al. Genetic testing of maturity-onset diabetes of the young current status and future perspectives. Front Endocrinol. 2018;9:253.
Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S, et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat. 2009;30(11):1512–26.
Comments (0)