Decoding MODY: exploring genetic roots and clinical pathways

Tattersall RB, Fajans SS, Arbor A. A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes. 1975;24(1):44–53.

Article  CAS  PubMed  Google Scholar 

Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504–8.

Article  CAS  PubMed  Google Scholar 

Yahaya TO, Ufuoma SB. Genetics and Pathophysiology of Maturity-onset Diabetes of the Young (MODY): a review of current trends. Oman Med J. 2020;35(3):e126.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffman LS, Fox TJ, Anastasopoulou C, Jialal I. Maturity Onset Diabetes in the Young. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 May 28]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK532900/

Firdous P, Nissar K, Masoodi S, Ganai B. Biomarkers: tools for discriminating MODY from other diabetic subtypes. Indian J Endocrinol Metab. 2022;26(3):223. https://doi.org/10.4103/ijem.ijem_266_21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDonald TJ, Shields BM, Lawry J, Owen KR, Gloyn AL, Ellard S, et al. High-sensitivity CRP discriminates HNF1A-MODY from other subtypes of diabetes. Diabetes Care. 2011;8:1860–2.

Article  Google Scholar 

Besser REJ, Ludvigsson J, Jones AG, McDonald TJ, Shields BM, Knight BA, et al. Urine C-Peptide creatinine ratio is a noninvasive alternative to the mixed-meal tolerance test in children and adults with Type 1 Diabetes. Diabetes Care. 2011;34(3):607–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ludvigsson J, Carlsson A, Forsander G, Ivarsson S, Kockum I, Lernmark Å, et al. C-peptide in the classification of diabetes in children and adolescents. Pediatr Diabetes. 2012;13(1):45–50. https://doi.org/10.1111/j.1399-5448.2011.00807.x.

Article  CAS  PubMed  Google Scholar 

Harjutsalo V, Lammi N, Karvonen M, Groop PH. Age at onset of Type 1 Diabetes in parents and recurrence risk in offspring. Diabetes. 2010;59(1):210–4.

Article  CAS  PubMed  Google Scholar 

Naylor RN, Greeley SAW, Bell GI, Philipson LH. Genetics and pathophysiology of neonatal diabetes mellitus. J Diabetes Investig. 2011;2(3):158–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rees K, Reed A, Banerjee A, Pasupathy D. Maturity onset diabetes of the young in pregnancy: diagnosis, management and prognosis of MODY in pregnancy. Obstet Gynaecol Reprod Med. 2017;27(5):144–7.

Article  Google Scholar 

Auble B, Dey J. Monogenetic etiologies of diabetes. Med Clin North Am. 2024;108(1):15–26.

Article  PubMed  Google Scholar 

Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, et al. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature. 1996;384(6608):458–60.

Article  CAS  PubMed  Google Scholar 

Nkonge KM, Nkonge DK, Nkonge TN. The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol. 2020;6(1):20.

Article  PubMed  PubMed Central  Google Scholar 

Valkovicova T, Skopkova M, Stanik J, Gasperikova D. Novel insights into genetics and clinics of the HNF1A-MODY. Endocr Regul. 2019;53(2):110–34. https://doi.org/10.2478/enr-2019-0013.

Article  PubMed  Google Scholar 

Singh R, Ashish A, Shah A, Shekhar PS. Interaction between oxidative stress and diabetes: a mini-review. J Diabetes Metab Disord Control. 2020;7(2):58–61.

Article  Google Scholar 

Macfarlane WM, Frayling TM, Ellard S, Evans JC, Allen LIS, Bulman MP, et al. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Invest. 1999;104(9):R33–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet. 1999;23(3):323–8.

Article  CAS  PubMed  Google Scholar 

Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, Dina C, Hamid YH, Joly E, et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci. 2005;102(13):4807–12. https://doi.org/10.1073/pnas.0409177102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lomberk G, Grzenda A, Mathison A, Escande C, Zhang JS, Calvo E, et al. Krüppel-like Factor 11 regulates the expression of metabolic genes via an evolutionarily conserved protein interaction domain functionally disrupted in maturity onset diabetes of the young. J Biol Chem. 2013;288(24):17745–58.

Article  CAS  PubMed  Google Scholar 

Smith SB, Ee HC, Conners JR, German MS. Paired-Homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol. 1999;19(12):8272–80. https://doi.org/10.1128/MCB.19.12.8272.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plengvidhya N, Kooptiwut S, Songtawee N, Doi A, Furuta H, Nishi M, et al. PAX4 Mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab. 2007;92(7):2821–6. https://doi.org/10.1210/jc.2006-1927.

Article  CAS  PubMed  Google Scholar 

Borowiec M, Liew CW, Thompson R, Boonyasrisawat W, Hu J, Mlynarski WM, et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and β-cell dysfunction. Proc Natl Acad Sci. 2009;106(34):14460–5. https://doi.org/10.1073/pnas.0906474106.

Article  PubMed  PubMed Central  Google Scholar 

Saitou N, editor. Evolution of the Human Genome I [Internet]. Tokyo: Springer Japan; 2017 [cited 2024 Jun 2]. (Evolutionary Studies). Available from: http://link.springer.com/https://doi.org/10.1007/978-4-431-56603-8

Valentínová L, Beer NL, Staník J, Tribble ND, Van De Bunt M, Hučková M, et al. Identification and functional characterisation of novel glucokinase mutations causing maturity-onset diabetes of the young in Slovakia. PLoS ONE. 2012;7(4):e34541. https://doi.org/10.1371/journal.pone.0034541.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho EH, Min JW, Choi SS, Choi HS, Kim SW. Identification of maturity-onset diabetes of the young caused by glucokinase mutations detected using whole-exome sequencing. Endocrinol Metab. 2017;32(2):296. https://doi.org/10.3803/EnM.2017.32.2.296.

Article  CAS  Google Scholar 

De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, et al. Update of variants identified in the pancreatic β-cell K ATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat. 2020;41(5):884–905. https://doi.org/10.1002/humu.23995.

Article  CAS  PubMed  Google Scholar 

Skoczek D, Dulak J, Kachamakova-Trojanowska N. Maturity onset diabetes of the young-new approaches for disease modelling. Int J Mol Sci. 2021;22(14):7553.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stanik J, Dusatkova P, Cinek O, Valentinova L, Huckova M, Skopkova M, et al. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia. 2014;57(3):480–4.

Article  CAS  PubMed  Google Scholar 

Firdous P, Nissar K, Ali S, Ganai BA, Shabir U, Hassan T, et al. Genetic testing of maturity-onset diabetes of the young current status and future perspectives. Front Endocrinol. 2018;9:253.

Article  Google Scholar 

Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S, et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat. 2009;30(11):1512–26.

Article  CAS  PubMed 

Comments (0)

No login
gif