Highly Potent New Probiotic Strains from Traditional Turkish Fermented Foods

Markowiak P, Ślizewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. https://doi.org/10.3390/NU9091021

Article  PubMed  PubMed Central  Google Scholar 

Vasiljevic T, Shah NP (2008) Probiotics—from Metchnikoff to bioactives. Int Dairy J 18:714–728. https://doi.org/10.1016/J.IDAIRYJ.2008.03.004

Article  CAS  Google Scholar 

Ayivi RD, Gyawali R, Krastanov A et al (2020) Lactic acid bacteria: food safety and human health applications. Dairy 1:202–232. https://doi.org/10.3390/DAIRY1030015

Article  Google Scholar 

Arena MP, Capozzi V, Russo P et al (2018) Immunobiosis and probiosis: antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Appl Microbiol Biotechnol 102:9949–9958. https://doi.org/10.1007/S00253-018-9403-9/FIGURES/1

Article  CAS  PubMed  Google Scholar 

Jonkers DMAE (2016) Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption. Best Pract Res Clin Gastroenterol 30:161–172. https://doi.org/10.1016/J.BPG.2016.02.006

Article  CAS  PubMed  Google Scholar 

Vera-Santander VE, Hernández-Figueroa RH, Jiménez-Munguía MT et al (2023) Health benefits of consuming foods with bacterial probiotics, postbiotics, and their metabolites: a review. Molecules. https://doi.org/10.3390/MOLECULES28031230

Article  PubMed  PubMed Central  Google Scholar 

Akpinar-Bayizit A, Yilmaz-Ersan L, Ozcan T (2010) Determination of Boza’s organic acid composition as it is affected by raw material and fermentation. Int J Food Prop 13:648–656. https://doi.org/10.1080/10942911003604194

Article  CAS  Google Scholar 

Cebeci Aydın A, Polat MF, Çalış B (2020) Isolation of lactic acid bacteria from Tarhana. ÇOMÜ Ziraat Fakültesi Dergisi 8:51–59. https://doi.org/10.33202/COMUAGRI.624715

Article  Google Scholar 

Cebeci A, Gürakan GC (2008) Molecular methods for identification of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus using methionine biosynthesis and 16S rRNA genes. J Dairy Res 75:392–398. https://doi.org/10.1017/S0022029908003543

Article  CAS  PubMed  Google Scholar 

Argyri AA, Zoumpopoulou G, Karatzas KAG et al (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33:282–291. https://doi.org/10.1016/J.FM.2012.10.005

Article  CAS  PubMed  Google Scholar 

Maragkoudakis PA, Zoumpopoulou G, Miaris C et al (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199. https://doi.org/10.1016/J.IDAIRYJ.2005.02.009

Article  CAS  Google Scholar 

Abid S, Farid A, Abid R et al (2022) Identification, biochemical characterization, and safety attributes of locally isolated Lactobacillus fermentum from Bubalus bubalis (buffalo) milk as a probiotic. Microorganisms. https://doi.org/10.3390/MICROORGANISMS10050954

Article  PubMed  PubMed Central  Google Scholar 

Xu H, Jeong HS, Lee HY, Ahn J (2009) Assessment of cell surface properties and adhesion potential of selected probiotic strains. Lett Appl Microbiol 49:434–442. https://doi.org/10.1111/J.1472-765X.2009.02684.X

Article  CAS  PubMed  Google Scholar 

Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71. https://doi.org/10.1016/J.JPHA.2015.11.005

Article  PubMed  Google Scholar 

Karaalioğlu O, Özmen-Toğay S, Ay M et al (2019) Çiğ balık örneklerinden izole edilen Enterococcus faecium ve Enterococcus faecalis suşlarının gıda güvenliği yönünden bazı özelliklerinin değerlendirilmesi. Turk Hijyen ve Deneysel Biyoloji Dergisi 76:341–352. https://doi.org/10.5505/TURKHIJYEN.2019.97268

Article  Google Scholar 

Heller AA, Spence DM (2019) A rapid method for post-antibiotic bacterial susceptibility testing. PLoS One 14:e0210534. https://doi.org/10.1371/JOURNAL.PONE.0210534

Article  CAS  PubMed  PubMed Central  Google Scholar 

Humphries RM, Ambler J, Mitchell SL et al (2018) CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol. https://doi.org/10.1128/JCM.01934-17

Article  PubMed  PubMed Central  Google Scholar 

Zago M, Fornasari ME, Carminati D et al (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28:1033–1040. https://doi.org/10.1016/J.FM.2011.02.009

Article  CAS  PubMed  Google Scholar 

Garai-Ibabe G, Areizaga J, Aznar R et al (2010) Screening and selection of 2-Branched (1,3)-β-d-glucan producing lactic acid bacteria and Exopolysaccharide characterization. J Agric Food Chem 58:6149–6156. https://doi.org/10.1021/JF904529Q

Article  CAS  PubMed  Google Scholar 

Jurášková D, Ribeiro SC, Silva CCG (2022) Exopolysaccharides produced by lactic acid bacteria: from biosynthesis to health-promoting properties. Foods. https://doi.org/10.3390/FOODS11020156

Yasmin I, Saeed M, Khan WA et al (2020) In Vitro probiotic potential and safety evaluation (hemolytic, cytotoxic activity) of bifidobacterium strains isolated from raw camel milk. Microorganisms. https://doi.org/10.3390/MICROORGANISMS8030354

Article  PubMed  PubMed Central  Google Scholar 

Zhang L, Qu H, Liu X et al (2022) Comparison and selection of probiotic Lactobacillus from human intestinal tract and traditional fermented food in vitro via PCA, unsupervised clustering algorithm, and heat-map analysis. Food Sci Nutr 10:4247–4257. https://doi.org/10.1002/FSN3.3018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bearson S, Bearson B, Foster JW (1997) Acid stress responses in enterobacteria. FEMS Microbiol Lett 147:173–180. https://doi.org/10.1111/J.1574-6968.1997.TB10238.X

Article  CAS  PubMed  Google Scholar 

Cotter PD, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Cui Y, Qu X (2018) Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch Microbiol 200:195–201. https://doi.org/10.1007/S00203-017-1446-2/FIGURES/1

Article  PubMed  Google Scholar 

Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bustos AY, Font de Valdez G, Fadda S, Taranto MP (2018) New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Res Int 112:250–262. https://doi.org/10.1016/J.FOODRES.2018.06.035

Article  CAS  PubMed  Google Scholar 

Horáčková Š, Plocková M, Demnerová K (2018) Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv 36:682–690. https://doi.org/10.1016/J.BIOTECHADV.2017.12.005

Article  PubMed  Google Scholar 

Śliżewska K, Chlebicz-Wójcik A (2020) Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology. https://doi.org/10.3390/BIOLOGY9120423

Article  PubMed  PubMed Central  Google Scholar 

Çakır E, Arıcı M, Durak MZ, Karasu S (2020) The molecular and technological characterization of lactic acid bacteria in einkorn sourdough: effect on bread quality. J Food Measurement Charact 14:1646–1655. https://doi.org/10.1007/S11694-020-00412-5/FIGURES/2

Article  G

Comments (0)

No login
gif