Metabarcoding for the Monitoring of the Microbiome and Parasitome of Medically Important Mosquito Species in Two Urban and Semi-urban Areas of South Korea

Muturi EJ, Ramirez JL, Rooney AP, Kim C-H (2017) Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Negl Trop Dis 11:e0005377. https://doi.org/10.1371/journal.pntd.0005377

Article  PubMed  PubMed Central  Google Scholar 

Minard G, Mavingui P, Moro CV (2013) Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors 6:146. https://doi.org/10.1186/1756-3305-6-146

Article  PubMed  PubMed Central  Google Scholar 

Ramirez JL, Souza-Neto J, Cosme RT et al (2012) Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 6:e1561. https://doi.org/10.1371/journal.pntd.0001561

Article  PubMed  PubMed Central  Google Scholar 

Kang X, Wang Y, Li S et al (2020) Comparative analysis of the gut microbiota of adult mosquitoes from eight locations in Hainan. China Front Cell Infect Microbiol 10:596750. https://doi.org/10.3389/fcimb.2020.596750

Article  PubMed  Google Scholar 

Balaji S, Deepthi KNG, Prabagaran SR (2021) Native Wolbachia influence bacterial composition in the major vector mosquito Aedes aegypti. Arch Microbiol 203:5225–5240. https://doi.org/10.1007/s00203-021-02506-0

Article  CAS  PubMed  Google Scholar 

Flores GAM, Lopez RP, Cerrudo CS et al (2023) Wolbachia dominance influences the Culex quinquefasciatus microbiota. Sci Rep 13:18980. https://doi.org/10.1038/s41598-023-46067-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stump E, Childs LM, Walker M (2021) Parasitism of Aedes albopictus by Ascogregarina taiwanensis lowers its competitive ability against Aedes triseriatus. Parasit Vectors 14:79. https://doi.org/10.1186/s13071-021-04581-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dodson BL, Hughes GL, Paul O et al (2014) Wolbachia enhances West Nile Virus (WNV) infection in the mosquito Culex tarsalis. PLoS Negl Trop Dis 8:e2965. https://doi.org/10.1371/journal.pntd.0002965

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duguma D, Rugman-Jones P, Kaufman MG et al (2013) Bacterial communities associated with Culex mosquito larvae and two emergent aquatic plants of bioremediation importance. PLoS ONE 8:e72522. https://doi.org/10.1371/journal.pone.0072522

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seabourn P, Spafford H, Yoneishi N, Medeiros M (2020) The Aedes albopictus (Diptera: Culicidae) microbiome varies spatially and with Ascogregarine infection. PLoS Negl Trop Dis 14:e0008615. https://doi.org/10.1371/journal.pntd.0008615

Article  PubMed  PubMed Central  Google Scholar 

Bahk YY, Lee H-W, Na B-K et al (2018) Epidemiological characteristics of re-emerging Vivax malaria in the Republic of Korea (1993–2017). Korean J Parasitol 56:531–543. https://doi.org/10.3347/kjp.2018.56.6.531

Article  PubMed  PubMed Central  Google Scholar 

Cha GW, Cho JE, Lee EJ et al (2013) Travel-associated Chikungunya Cases in South Korea during 2009–2010. Osong Public Health Res Perspect 4:170–175. https://doi.org/10.1016/j.phrp.2013.04.008

Article  PubMed  PubMed Central  Google Scholar 

Lee SH, Nam KW, Jeong JY et al (2013) The effects of climate change and globalization on mosquito vectors: evidence from Jeju Island, South Korea on the potential for Asian tiger mosquito (Aedes albopictus) influxes and survival from Vietnam rather than Japan. PLoS ONE 8:e68512. https://doi.org/10.1371/journal.pone.0068512

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brass DP, Cobbold CA, Purse BV et al (2024) Role of vector phenotypic plasticity in disease transmission as illustrated by the spread of dengue virus by Aedes albopictus. Nat Commun 15:7823. https://doi.org/10.1038/s41467-024-52144-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Guo X, Jiang S et al (2022) The potential vector competence and overwintering of West Nile virus in vector aedes albopictus in China. Front Microbiol. https://doi.org/10.3389/fmicb.2022.888751

Article  PubMed  PubMed Central  Google Scholar 

de Wispelaere M, Desprès P, Choumet V (2017) European Aedes albopictus and Culex pipiens are competent vectors for Japanese Encephalitis Virus. PLoS Negl Trop Dis 11:e0005294. https://doi.org/10.1371/journal.pntd.0005294

Article  PubMed  PubMed Central  Google Scholar 

Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-Borne Zoonotic Dis 7:76–85. https://doi.org/10.1089/vbz.2006.0562

Article  PubMed  Google Scholar 

Haba Y, McBride L (2022) Origin and status of Culex pipiens mosquito ecotypes. Curr Biol 32:R237–R246. https://doi.org/10.1016/j.cub.2022.01.062

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryu J, Choi KS (2022) Species diversity of the Culex pipiens complex in the Republic of Korea. Entomol Res 52:376–381. https://doi.org/10.1111/1748-5967.12610

Article  CAS  Google Scholar 

Turell MJ, Mores CN, Dohm DJ et al (2006) Laboratory transmission of Japanese Encephalitis, West Nile, and Getah Viruses by mosquitoes (Diptera: Culicidae) collected near camp greaves, Gyeonggi province, Republic of Korea, 2003. J Med Entomol 43:1076–1081. https://doi.org/10.1093/jmedent/43.5.1076

Article  PubMed  Google Scholar 

Kim H, Cha G-W, Jeong YE et al (2015) Detection of Japanese encephalitis virus genotype V in Culex orientalis and Culex pipiens (Diptera: Culicidae) in Korea. PLoS ONE 10:e0116547. https://doi.org/10.1371/journal.pone.0116547

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JH, Kim H-W, Mustafa B et al (2023) The relationships between microbiome diversity and epidemiology in domestic species of malaria-mediated mosquitoes of Korea. Sci Rep 13:9081. https://doi.org/10.1038/s41598-023-35641-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tchouassi DP, Muturi EJ, Arum SO et al (2019) Host species and site of collection shape the microbiota of Rift Valley fever vectors in Kenya. PLoS Negl Trop Dis 13:e0007361. https://doi.org/10.1371/journal.pntd.0007361

Article  PubMed  PubMed Central  Google Scholar 

Kim SL, Choi JH, Yi M et al (2022) Metabarcoding of bacteria and parasites in the gut of Apodemus agrarius. Parasit Vectors 15:486. https://doi.org/10.1186/s13071-022-05608-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar NP, Rajavel AR, Natarajan R, Jambulingam P (2007) DNA barcodes can distinguish species of indian mosquitoes (Diptera: Culicidae). J Med Entomol 44:01–07. https://doi.org/10.1093/jmedent/41.5.01

Article  CAS  Google Scholar 

Bugenyi AW, Cho H-S, Heo J (2020) Association between oropharyngeal microbiome and weight gain in piglets during pre and post weaning life. J Anim Sci Technol 62:247–262. https://doi.org/10.5187/jast.2020.62.2.247

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lappan R, Classon C, Kumar S et al (2019) Meta-taxonomic analysis of prokaryotic and eukaryotic gut flora in stool samples from visceral leishmaniasis cases and endemic controls in Bihar State India. PLoS Negl Trop Dis 13:e0007444. https://doi.org/10.1371/journal.pntd.0007444

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif