From Farm to Community: Dispersal of Potentially Pathogenic Staphylococcus and Mammaliicoccus Species and Antimicrobial Resistance Across Shared Environments

Parte AC, Sardà Carbasse J, Meier-Kolthoff JP et al (2020) List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612. https://doi.org/10.1099/ijsem.0.004332

Article  PubMed  PubMed Central  Google Scholar 

Bartlett A, Padfield D, Lear L et al (2022) A comprehensive list of bacterial pathogens infecting humans. Microbiology (N Y) 168:001269. https://doi.org/10.1099/mic.0.001269

Article  CAS  Google Scholar 

Rossi CC, Pereira MF, Giambiagi-deMarval M (2020) Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet Mol Biol 43:e20190065. https://doi.org/10.1590/1678-4685-gmb-2019-0065

Article  CAS  PubMed  PubMed Central  Google Scholar 

Despotovic M, de Nies L, Busi SB, Wilmes P (2023) Reservoirs of antimicrobial resistance in the context of One Health. Curr Opin Microbiol 73:102291. https://doi.org/10.1016/j.mib.2023.102291

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rossi CC, Ahmad F, Giambiagi-deMarval M (2024) Staphylococcus haemolyticus: an updated review on nosocomial infections, antimicrobial resistance, virulence, genetic traits, and strategies for combating this emerging opportunistic pathogen. Microbiol Res 283:127652. https://doi.org/10.1016/j.micres.2024.127652

Article  CAS  Google Scholar 

Tomazi T, Gonçalves JL, Barreiro JR et al (2014) Identification of coagulase-negative staphylococci from bovine intramammary infection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 52:1658–1663. https://doi.org/10.1128/JCM.03032-13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Švec P, Pantůček R, Petráš P et al (2010) Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst Appl Microbiol 33:451–456. https://doi.org/10.1016/j.syapm.2010.09.004

Article  CAS  PubMed  Google Scholar 

Heras J, Domínguez C, Mata E et al (2015) GelJ—a tool for analyzing DNA fingerprint gel images. BMC Bioinform 16:270. https://doi.org/10.1186/s12859-015-0703-0

Article  CAS  Google Scholar 

Del Vecchio VG, Petroziello JM, Gress MJ et al (1995) Molecular genotyping of methicillin-resistant Staphylococcus aureus via fluorophore-enhanced repetitive-sequence PCR. J Clin Microbiol 33:2141–2144. https://doi.org/10.1128/JCM.33.8.2141-2144.1995

Article  PubMed  PubMed Central  Google Scholar 

Takeuchi F, Watanabe S, Baba T et al (2005) Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 187:7292–7308. https://doi.org/10.1128/JB.187.21.7292-7308.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barros EM, Lemos M, Souto-Padrón T, Giambiagi-deMarval M (2015) Phenotypic and genotypic characterization of biofilm formation in Staphylococcus haemolyticus. Curr Microbiol 70:829–834. https://doi.org/10.1007/s00284-015-0794-x

Article  CAS  PubMed  Google Scholar 

Stepanović S, Vuković D, Hola V et al (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

Article  PubMed  Google Scholar 

Zieliński W, Korzeniewska E, Harnisz M et al (2020) The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. Environ Int 143:105914. https://doi.org/10.1016/j.envint.2020.105914

Article  CAS  PubMed  Google Scholar 

Balasubramanian D, Harper L, Shopsin B, Torres VJ (2017) Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis. https://doi.org/10.1093/femspd/ftx005

Article  PubMed  PubMed Central  Google Scholar 

Lee AS, de Lencastre H, Garau J et al (2018) Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 4:18033. https://doi.org/10.1038/nrdp.2018.33

Article  PubMed  Google Scholar 

Severn MM, Horswill AR (2023) Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol 21:97–111. https://doi.org/10.1038/s41579-022-00780-3

Article  CAS  PubMed  Google Scholar 

Djawadi B, Heidari N, Mohseni M (2023) UTI caused by Staphylococcus saprophyticus. In: Hegazy W (ed) Urinary tract infections. IntechOpen, Ch.2–142p. https://doi.org/10.5772/intechopen.110275

Madhaiyan M, Wirth JS, Saravanan VS (2020) Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int J Syst Evol Microbiol 70:5926–5936. https://doi.org/10.1099/ijsem.0.004498

Article  CAS  PubMed  Google Scholar 

Silva PM, Dias CD, Vilar LC et al (2023) Dispersion and persistence of antimicrobial resistance genes among Staphylococcus spp. and Mammaliicoccus spp. isolated along a swine manure treatment plant. Environ Sci Pollut Res 30:34709–34719. https://doi.org/10.1007/s11356-022-24725-8

Article  CAS  Google Scholar 

Carvalho A, Giambiagi-deMarval M, Rossi CC (2024) Mammaliicoccus sciuri’s pan-immune system and the dynamics of horizontal gene transfer among Staphylococcaceae: a One-Health CRISPR Tale. J Microbiol 62:775–784. https://doi.org/10.1007/s12275-024-00156-7

Article  PubMed  Google Scholar 

Wang Y, Zhang P, Wu J et al (2023) Transmission of livestock-associated methicillin-resistant Staphylococcus aureus between animals, environment, and humans in the farm. Environ Sci Pollut Res 30:86521–86539. https://doi.org/10.1007/s11356-023-28532-7

Article  Google Scholar 

Chieffi D, Fanelli F, Fusco V (2023) Antimicrobial and biocide resistance in Staphylococcus aureus: genomic features, decontamination strategies, and the role of S. aureus complex-related species, with a focus on ready-to-eat food and food-contact surfaces. Front Food Sci Technol 3:1165871. https://doi.org/10.3389/frfst.2023.1165871

Article  Google Scholar 

Rodríguez MF, Gomez AP, Ceballos-Garzon A (2023) Antimicrobial resistance profiles of Staphylococcus isolated from cows with subclinical mastitis: do strains from the environment and from humans contribute to the dissemination of resistance among bacteria on dairy farms in Colombia? Antibiotics (Basel) 12:1574. https://doi.org/10.3390/antibiotics12111574

Article  CAS  PubMed  Google Scholar 

Rossato AM, Primon-Barros M, da Luz Rocha L et al (2020) Resistance profile to antimicrobials agents in methicillin-resistant Staphylococcus aureus isolated from hospitals in South Brazil between 2014–2019. Rev Soc Bras Med Trop 53:e20200431. https://doi.org/10.1590/0037-8682-0431-2020

Article  PubMed  PubMed Central  Google Scholar 

Albernaz-Gonçalves R, Olmos G, Hötzel MJ (2021) Exploring farmers’ reasons for antibiotic use and misuse in pig farms in Brazil. Antibiotics 10:331. https://doi.org/10.3390/antibiotics10030331

Article  PubMed  PubMed Central  Google Scholar 

Del Fiol FD, Bergamaschi CD, De Andrade IP et al (2022) Consumption trends of antibiotics in Brazil during the COVID-19 pandemic. Front Pharmacol 13:844818. https://doi.org/10.3389/fphar.2022.844818

Article  CAS  PubMed  PubMed Central  Google Scholar 

Souza-Silva T, Rossi CC, Andrade-Oliveira AL et al (2022) Interspecies transfer of plasmid-borne gentamicin resistance between Staphylococcus isolated from domestic dogs to Staphylococcus aureus. Infect Genet Evol 98:105230. https://doi.org/10.1016/j.meegid.2022.105230

Article  CAS  PubMed  Google Scholar 

Tacconelli E, Carrara E, Savoldi A et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

Article  PubMed  Google Scholar 

Williams MC, Dominguez SR, Prinzi A et al (2020) Reliability of mecA in predicting phenotypic susceptibilities of coagulase-negative staphylococci and Staphylococcus aureus. Open Forum Infect Dis 7:ofaa553. https://doi.org/10.1093/ofid/ofaa553

Article 

Comments (0)

No login
gif