Hou P, Wang H, Zhao G, He C, He H (2017) Rapid detection of infectious bovine Rhinotracheitis virus using recombinase polymerase amplification assays. BMC Vet Res 13(1):386. https://doi.org/10.1186/s12917-017-1284-0
Article CAS PubMed PubMed Central Google Scholar
Fan Q, Xie Z, Xie L, Liu J, Pang Y, Deng X, Xie Z, Peng Y, Wang X (2012) A reverse transcription loop-mediated isothermal amplification method for rapid detection of bovine viral diarrhea virus. J Virol Methods 186(1–2):43–48. https://doi.org/10.1016/j.jviromet.2012.08.007
Article CAS PubMed PubMed Central Google Scholar
Straub OC (2001) Advances in BHV1 (IBR) research. Dtsch Tierarztl Wochenschr 108(10):419–422
El-Mayet FS, Sawant L, Wijesekera N, Jones C (2020) Progesterone increases the incidence of bovine herpesvirus 1 reactivation from latency and stimulates productive infection. Virus Res 276:197803. https://doi.org/10.1016/j.virusres.2019.197803
Article CAS PubMed Google Scholar
Wathes DC, Oguejiofor CF, Thomas C, Cheng Z (2020) Importance of viral disease in dairy cow fertility. Engineering 6(1):26–33. https://doi.org/10.1016/j.eng.2019.07.020
Article CAS PubMed Google Scholar
De Brun L, Leites M, Furtado A, Campos F, Roehe P, Puentes R (2021) Field Evaluation of Commercial Vaccines against Infectious Bovine Rhinotracheitis (Ibr) Virus Using Different Immunization Protocols. Vaccines 9(4). https://doi.org/10.3390/vaccines9040408
Guo L, Yang Y, Liu L, Liao P, Wen Y, Wu H, Cheng S (2015) A proteomic study of the differential protein expression in MDBK cells after bovine herpesvirus type 1 infection (BHV-1) strain treatment. Int J Clin Exp Med 8(3):4204–4211
PubMed PubMed Central Google Scholar
Tang H, Li K, Zhang S, Lan H, Liang L, Huang C, Li T (2021) Inhibitory effect of paeonol on apoptosis, oxidative stress, and inflammatory response in human umbilical vein endothelial cells induced by high glucose and palmitic acid induced through regulating SIRT1/FOXO3a/NF-kappaB pathway. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 41(3):111–124. https://doi.org/10.1089/jir.2019.0236
Yan G, Zhang L, Wu D, Jiang S, Wu Q, Dai M (2024) Paeonol attenuates nonalcoholic steatohepatitis by regulating intestinal flora and AhR/NLRP3/Caspase-1 metabolic pathway. J Ethnopharmacol 329:118147. https://doi.org/10.1016/j.jep.2024.118147
Article CAS PubMed Google Scholar
Adki KM, Kulkarni YA (2020) Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci 250:117544. https://doi.org/10.1016/j.lfs.2020.117544
Article CAS PubMed Google Scholar
Chen C, Liu S, Cao G, Hu Y, Wang R, Wu M, Liu M, Yiu KH (2022) Cardioprotective effect of paeonol on chronic heart failure induced by doxorubicin via regulating the miR-21-5p/S-phase kinase-associated protein 2 axis. Frontiers in cardiovascular medicine 9:695004. https://doi.org/10.3389/fcvm.2022.695004
Article CAS PubMed PubMed Central Google Scholar
Wu J, Xue X, Zhang B, Jiang W, Cao H, Wang R, Sun D, Guo R (2016) The protective effects of paeonol against epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway. Chem Biol Interact 244:1–8. https://doi.org/10.1016/j.cbi.2015.11.025
Article CAS PubMed Google Scholar
Huang TJ, Chuang H, Liang YC, Lin HH, Horng JC, Kuo YC, Chen CW, Tsai FY, Yen SC, Chou SC, Hsu MH (2015) Design, synthesis, and bioevaluation of paeonol derivatives as potential anti-HBV agents. Eur J Med Chem 90:428–435. https://doi.org/10.1016/j.ejmech.2014.11.050
Article CAS PubMed Google Scholar
Liu M, Yuan G, Luo G, Guo X, Chen M, Yang H, He F, Yang T, Zhang X, Wu Q, Zhou H, Yang S (2022) Network pharmacology analysis and experimental verification strategies reveal the action mechanism of Danshen decoction in treating ischemic cardiomyopathy. Evidence-based complementary and alternative medicine : eCAM 2022:7578055. https://doi.org/10.1155/2022/7578055
Yu W, Ilyas I, Aktar N, Xu S (2022) A review on therapeutical potential of paeonol in atherosclerosis. Front Pharmacol 13:950337. https://doi.org/10.3389/fphar.2022.950337
Article CAS PubMed PubMed Central Google Scholar
Weng J, Liu Q, Li C, Feng Y, Chang Q, Xie M, Wang X, Li M, Zhang H, Mao R, Zhang N, Yang X, Chung KF, Adcock IM, Huang Y, Li F (2024) TRPA1-PI3K/Akt-OPA1-ferroptosis axis in ozone-induced bronchial epithelial cell and lung injury. The Science of the total environment 918:170668. https://doi.org/10.1016/j.scitotenv.2024.170668
Article CAS PubMed Google Scholar
Hwang C, Kang YK, Kim JY, Shin SH, Park JY, Song JS, Kim SY, Jung SJ, Lee JH, Na JY, Shin DH, Kim JY, Park SW, Lee HJ (2024) TFE3/PI3K/Akt/mTOR axis in renal cell carcinoma affects tumor microenvironment. Am J Pathol 194(7):1306–1316. https://doi.org/10.1016/j.ajpath.2024.02.022
Article CAS PubMed Google Scholar
Liu SS, Bai TT, Que TL, Luo A, Liang YX, Song YX, Liu TY, Chen JW, Li J, Li N, Zhang ZC, Chen NN, Liu Y, Zhang ZC, Zhou YL, Wang X, Zhu ZB (2024) PI3K/AKT mediated De novo fatty acid synthesis regulates RIG-1/MDA-5-dependent type I IFN responses in BVDV-infected CD8(+)T cells. Vet Microbiol 291:110034. https://doi.org/10.1016/j.vetmic.2024.110034
Article CAS PubMed Google Scholar
Li C, Zhao Z, Yuan X, Wang X, Wang H, Fan J, Liu Y, Zhou Y, Zhu Z, Zhang Z (2024) Luteolin inhibits BHV-1 replication and alleviates virus-induced inflammatory responses by regulating PI3K/AKT pathway. Microb Pathog 199:107258. https://doi.org/10.1016/j.micpath.2024.107258
Comments (0)