Noha IO, Shixue Y (2018) Isolation and characterization of pea plant (Pisum sativum L.) growth-promoting Rhizobacteria. Afr J Microbiol Res 12:820–828. https://doi.org/10.5897/ajmr2018.8859
Feng H, Fu R, Hou X et al (2021) Chemotaxis of beneficial rhizobacteria to root exudates: The first step towards root–microbe rhizosphere interactions. Int J Mol Sci. https://doi.org/10.3390/ijms22136655
Article PubMed PubMed Central Google Scholar
Bhat BA, Tariq L, Nissar S et al (2022) The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. J Appl Microbiol 133:2717–2741. https://doi.org/10.1111/jam.15796
Article CAS PubMed Google Scholar
Vaghela N, Gohel S (2023) Medicinal plant-associated rhizobacteria enhance the production of pharmaceutically important bioactive compounds under abiotic stress conditions. J Basic Microbiol 63:308–325
Article CAS PubMed Google Scholar
Niu X, Song L, Xiao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid and their potential in alleviating drought stress. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02580
Article PubMed PubMed Central Google Scholar
Singh TB, Sahai V, Goyal D et al (2020) Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture. Curr Microbiol 77:3633–3642. https://doi.org/10.1007/s00284-020-02165-2
Article CAS PubMed Google Scholar
Zhang J, Guo T, Wang P et al (2018) Characterization of diazotrophic growth-promoting rhizobacteria isolated from ginger root soil as antagonists against Ralstonia solanacearum. Biotechnol Biotechnol Equip 32:1447–1454. https://doi.org/10.1080/13102818.2018.1533431
Raio A, Puopolo G (2021) Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield. J Microbiol Biotechnol. https://doi.org/10.1007/s11274-021-03063-w
Li X, Yan Z, Gu D et al (2019) Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. J Basic Microbiol 59:579–590. https://doi.org/10.1002/jobm.201800656
Article CAS PubMed Google Scholar
Kshetri P, Roy SS, Sharma SK et al (2018) Feather degrading, phytostimulating, and biocontrol potential of native actinobacteria from North Eastern Indian Himalayan Region. J Basic Microbiol 58:730–738. https://doi.org/10.1002/jobm.201800169
Article CAS PubMed Google Scholar
Gouda S, Kerry RG, Das G et al (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140. https://doi.org/10.1016/j.micres.2017.08.016
Emami S, Alikhani HA, Pourbabaee AA et al (2020) Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils. Rhizosphere. https://doi.org/10.1016/j.rhisph.2020.100196
Sood G, Kaushal R, Panwar G, Dhiman M (2019) Effect of indigenous plant growth-promoting Rhizobacteria on Wheat (Triticum Aestivum L.) productivity and soil nutrients. Commun Soil Sci Plant Anal 50:141–152. https://doi.org/10.1080/00103624.2018.1556282
Vimal SR, Gupta J, Singh JS (2018) Effect of salt tolerant Bacillus sp. and Pseudomonas sp. on wheat (Triticum aestivum L) growth under soil salinity: a comparative study. Microbiol Res (Pavia). https://doi.org/10.4081/mr.2018.7462
Pratap A, Gupta S, Rathore M, et al (2021) Mungbean. The Beans and the Peas: From Orphan to Mainstream Crops. https://doi.org/10.1016/B978-0-12-821450-3.00009-3
Sikora FJ, Moore KP Soil Test Methods From the Southeastern United States Southern Extension and Research Activity Information Exchange Group-6 (SERA-IEG-6)
Gohel SD, Singh SP (2018) Molecular phylogeny and diversity of the salt-tolerant alkaliphilic actinobacteria inhabiting coastal Gujarat, India. Geomicrobiol J 35:775–789. https://doi.org/10.1080/01490451.2018.1471107
Moyes RB, Reynolds J, Breakwell DP (2009) Differential staining of bacteria: gram stain. Curr Protoc Microbiol. https://doi.org/10.1002/9780471729259.mca03cs15
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Molecular cloning: a laboratory manual.
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/MOLBEV/MSY096
Article CAS PubMed PubMed Central Google Scholar
Letunic I, Bork P (2024) Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res 52:W78–W82. https://doi.org/10.1093/NAR/GKAE268
Article PubMed PubMed Central Google Scholar
Goswami D, Parmar S, Vaghela H et al (2015) Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). Cogent Food Agric. https://doi.org/10.1080/23311932.2014.1000714
Ghavami N, Alikhani HA, Pourbabaei AA, Besharati H (2017) Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. J Plant Nutr 40:736–746. https://doi.org/10.1080/01904167.2016.1262409
Chaiharn M, Lumyong S (2009) Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Northern Thailand. World J Microbiol Biotechnol 25:305–314. https://doi.org/10.1007/s11274-008-9892-2
Waday YA, Aklilu EG, Bultum MS, Ancha VR (2022) Optimization of soluble phosphate and IAA production using response surface methodology and ANN approach. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e12224
Article PubMed PubMed Central Google Scholar
Chauhan J, Gohel S (2022) Exploring plant growth-promoting, biocatalytic, and antimicrobial potential of salt tolerant rhizospheric Georgenia soli strain TSm39 for sustainable agriculture. Braz J Microbiol 53:1817–1828. https://doi.org/10.1007/S42770-022-00794-2/METRICS
Article CAS PubMed PubMed Central Google Scholar
Phour M, Sindhu SS (2020) Amelioration of salinity stress and growth stimulation of mustard (Brassica juncea L.) by salt-tolerant Pseudomonas species. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2020.103518
Parte AC, Carbasse JS, Meier-Kolthoff JP et al (2020) List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612. https://doi.org/10.1099/IJSEM.0.004332/CITE/REFWORKS
Article PubMed PubMed Central Google Scholar
Gupta V, Ansari AA (2014) Geomorphic portrait of the Little Rann of Kutch. Arab J of Geosci 7:527–536. https://doi.org/10.1007/s12517-012-0743-y
Hakim S, Naqqash T, Nawaz MS et al (2021) Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2021.617157
Patel S, Jinal HN, Amaresan N (2017) Isolation and characterization of drought resistance bacteria for plant growth promoting properties and their effect on chilli (Capsicum annuum) seedling under salt stress. Biocatal Agric Biotechnol 12:85–89. https://doi.org/10.1016/j.bcab.2017.09.002
Sarikhani MR, Khoshru B, Greiner R (2019) Isolation and identification of temperature tolerant phosphate solubilizing bacteria as a potential microbial fertilizer. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-019-2702-1
Lewis WH, Tahon G, Geesink P et al (2021) Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol 19:225–240. https://doi.org/10.1038/s41579-020-00458-8
Comments (0)