Gudiña EJ, Teixeira JA (2022) Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants? Biotechnol Adv 60:108013. https://doi.org/10.1016/j.biotechadv.2022.108013
Article CAS PubMed Google Scholar
Ali N, Pang Z, Wang F et al (2022) Lipopeptide biosurfactants from Bacillus spp.: types, production, biological activities, and applications in food. J Food Qual. https://doi.org/10.1155/2022/3930112
Varjani S, Upasani VN, Pandey A (2020) Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci Total Environ 737:139766. https://doi.org/10.1016/j.scitotenv.2020.139766
Article CAS PubMed Google Scholar
Zargar AN, Kumar M, Srivastava P (2023) Biosurfactants: Challenges and future outlooks. In: Aslam R, Mobin M, Aslam J, Zehra S (eds) Advancements in biosurfactants research. Springer, Cham, pp 551–576
McKenna PP, Naughton PJ, Dooley JSG et al (2024) Microbial biosurfactants: antimicrobial activity and potential biomedical and therapeutic exploits. Pharmaceuticals 17:138. https://doi.org/10.3390/ph17010138
Sriram MI, Kalishwaralal K, Deepak V et al (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B Biointerfaces 85:174–181. https://doi.org/10.1016/j.colsurfb.2011.02.026
Article CAS PubMed Google Scholar
Malyan SK, Singh R, Rawat M et al (2019) An overview of carcinogenic pollutants in groundwater of India. Biocatal Agric Biotechnol 21:101288. https://doi.org/10.1016/j.bcab.2019.101288
Anjum F, Gautam G, Edgard G, Negi S (2016) Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresour Technol 213:262–269. https://doi.org/10.1016/j.biortech.2016.02.091
Article CAS PubMed Google Scholar
Markande AR, Patel D, Varjani S (2021) A review on biosurfactants: Properties, applications and current developments. Bioresour Technol 330:124963. https://doi.org/10.1016/j.biortech.2021.124963
Article CAS PubMed Google Scholar
Sarubbo LA, da Silva M, GC, Durval IJB, et al (2022) Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochem Eng J 181:108377. https://doi.org/10.1016/j.bej.2022.108377
Yaraguppi DA, Bagewadi ZK, Muddapur UM, Mulla SI (2020) Response surface methodology-based optimization of biosurfactant production from isolated Bacillus aryabhattai strain ZDY2. J Pet Explor Prod Technol 10:2483–2498. https://doi.org/10.1007/s13202-020-00866-9
Pardhi DS, Panchal RR, Raval VH et al (2022) Microbial surfactants: A journey from fundamentals to recent advances. Front Microbiol 13:982603. https://doi.org/10.3389/fmicb.2022.982603
Article PubMed PubMed Central Google Scholar
Chowdhury AA, Basak N, Islam E (2023) Uranium and arsenic bioremediation potential of plastic associated multi-metal tolerant Bacillus sp. EIKU23. J Hazard Mater Lett. https://doi.org/10.1016/j.hazl.2023.100101
Nayarisseri A, Singh P, Singh SK (2018) Screening, isolation and characterization of biosurfactant producing Bacillus subtilis strain ANSKLAB03. Bioinformation 14:304–314. https://doi.org/10.6026/97320630014304
Article PubMed PubMed Central Google Scholar
Aboelkhair H, Diaz P, Attia A (2022) Biosurfactant production using Egyptian oil fields indigenous bacteria for microbial enhanced oil recovery. J Pet Sci Eng 208:109601. https://doi.org/10.1016/j.petrol.2021.109601
Ravindran A, Sajayan A, Priyadharshini GB et al (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol 11:222. https://doi.org/10.3389/fmicb.2020.00222
Article PubMed PubMed Central Google Scholar
Shagufta S, Dharani PVD (2022) Effect of carbon and nitrogen sources on production of biosurfactant by bacterial species SPTSS1. AJMBES. https://doi.org/10.53550/AJMBES.2022.v24i01.005
Satpute SK, Mone NS, Das P et al (2019) Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiol. https://doi.org/10.1186/s12866-019-1412-z
Article PubMed PubMed Central Google Scholar
Fariq A, Yasmin A (2020) Production, characterization and bioactivities of biosurfactants from newly isolated strictly halophilic bacteria. Process Biochem 98:1–10. https://doi.org/10.1016/j.procbio.2020.07.011
Yan X, Gu S, Cui X et al (2019) Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microb Pathog 127:12–20. https://doi.org/10.1016/j.micpath.2018.11.039
Article CAS PubMed Google Scholar
Shukla SK, Rao TS (2017) An improved crystal violet assay for biofilm quantification in 96-well microtitre plate. Microbiology 16:199
Tiquia SM, Tam NFY, Hodgkiss IJ (1996) Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ Pollut 93:249–256. https://doi.org/10.1016/S0269-7491(96)00052-8
Article CAS PubMed Google Scholar
Hamouda RA, Alhumairi AM, Saddiq AA (2023) Simultaneous bioremediation of petroleum hydrocarbons and production of biofuels by the micro-green alga, cyanobacteria, and its consortium. Heliyon 9:e16656. https://doi.org/10.1016/j.heliyon.2023.e16656
Article CAS PubMed PubMed Central Google Scholar
Jemil N, Ben Ayed H, Manresa A et al (2017) Antioxidant properties, antimicrobial and anti-adhesive activities of DCS1 lipopeptides from Bacillus methylotrophicus DCS1. BMC Microbiol 17:144. https://doi.org/10.1186/s12866-017-1050-2
Article CAS PubMed PubMed Central Google Scholar
Liu C, You Y, Zhao R et al (2017) Biosurfactant production from Pseudomonas taiwanensis L1011 and its application in accelerating the chemical and biological decolorization of azo dyes. Ecotoxicol Environ Saf 145:8–15. https://doi.org/10.1016/j.ecoenv.2017.07.012
Article CAS PubMed Google Scholar
Barakat KM, Hassan SWM, Darwesh OM (2017) Biosurfactant production by haloalkaliphilic Bacillus strains isolated from Red Sea. Egypt Egypt J Aquat Res 43:205–211. https://doi.org/10.1016/j.ejar.2017.09.001
Dasgupta A, Saha S, Ganguli P et al (2023) Characterization of pumilacidin, a lipopeptide biosurfactant produced from Bacillus pumilus NITDID1 and its prospect in bioremediation of hazardous pollutants. Arch Microbiol 205:274. https://doi.org/10.1007/s00203-023-03619-4
Article CAS PubMed Google Scholar
Huczyński A, Ratajczak-Sitarz M, Stefańska J et al (2011) Reinvestigation of the structure of monensin A phenylurethane sodium salt based on X-ray crystallographic and spectroscopic studies, and its activity against hospital strains of methicillin-resistant S. epidermidis and S. aureus. J Antibiot (Tokyo) 64:249–256. https://doi.org/10.1038/ja.2010.167
Article CAS PubMed Google Scholar
Sharma S, Verma R, Pandey LM (2019) Crude oil degradation and biosurfactant production abilities of isolated Agrobacterium fabrum SLAJ731. Biocatal Agric Biotechnol 21:101322. https://doi.org/10.1016/j.bcab.2019.101322
Wu B, Xiu J, Yu L et al (2022) Biosurfactant production by Bacillus subtilis SL and its potential for enhanced oil recovery in low permeability reservoirs. Sci Rep 12:7785. https://doi.org/10.1038/s41598-022-12025-7
Article CAS PubMed PubMed Central Google Scholar
de Faria AF, Teodoro-Martinez DS, de Oliveira Barbosa GN et al (2011) Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem 46:1951–1957. https://doi.org/10.1016/j.procbio.2011.07.001
Comments (0)