Production Optimization and Potential Bioactivities of Biosurfactant from PET Surface-Dwelling Oligotrophic Bacillus sp. EIKU23

Gudiña EJ, Teixeira JA (2022) Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants? Biotechnol Adv 60:108013. https://doi.org/10.1016/j.biotechadv.2022.108013

Article  CAS  PubMed  Google Scholar 

Ali N, Pang Z, Wang F et al (2022) Lipopeptide biosurfactants from Bacillus spp.: types, production, biological activities, and applications in food. J Food Qual. https://doi.org/10.1155/2022/3930112

Article  Google Scholar 

Varjani S, Upasani VN, Pandey A (2020) Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci Total Environ 737:139766. https://doi.org/10.1016/j.scitotenv.2020.139766

Article  CAS  PubMed  Google Scholar 

Zargar AN, Kumar M, Srivastava P (2023) Biosurfactants: Challenges and future outlooks. In: Aslam R, Mobin M, Aslam J, Zehra S (eds) Advancements in biosurfactants research. Springer, Cham, pp 551–576

Chapter  Google Scholar 

McKenna PP, Naughton PJ, Dooley JSG et al (2024) Microbial biosurfactants: antimicrobial activity and potential biomedical and therapeutic exploits. Pharmaceuticals 17:138. https://doi.org/10.3390/ph17010138

Article  CAS  Google Scholar 

Sriram MI, Kalishwaralal K, Deepak V et al (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B Biointerfaces 85:174–181. https://doi.org/10.1016/j.colsurfb.2011.02.026

Article  CAS  PubMed  Google Scholar 

Malyan SK, Singh R, Rawat M et al (2019) An overview of carcinogenic pollutants in groundwater of India. Biocatal Agric Biotechnol 21:101288. https://doi.org/10.1016/j.bcab.2019.101288

Article  Google Scholar 

Anjum F, Gautam G, Edgard G, Negi S (2016) Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresour Technol 213:262–269. https://doi.org/10.1016/j.biortech.2016.02.091

Article  CAS  PubMed  Google Scholar 

Markande AR, Patel D, Varjani S (2021) A review on biosurfactants: Properties, applications and current developments. Bioresour Technol 330:124963. https://doi.org/10.1016/j.biortech.2021.124963

Article  CAS  PubMed  Google Scholar 

Sarubbo LA, da Silva M, GC, Durval IJB, et al (2022) Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochem Eng J 181:108377. https://doi.org/10.1016/j.bej.2022.108377

Article  CAS  Google Scholar 

Yaraguppi DA, Bagewadi ZK, Muddapur UM, Mulla SI (2020) Response surface methodology-based optimization of biosurfactant production from isolated Bacillus aryabhattai strain ZDY2. J Pet Explor Prod Technol 10:2483–2498. https://doi.org/10.1007/s13202-020-00866-9

Article  CAS  Google Scholar 

Pardhi DS, Panchal RR, Raval VH et al (2022) Microbial surfactants: A journey from fundamentals to recent advances. Front Microbiol 13:982603. https://doi.org/10.3389/fmicb.2022.982603

Article  PubMed  PubMed Central  Google Scholar 

Chowdhury AA, Basak N, Islam E (2023) Uranium and arsenic bioremediation potential of plastic associated multi-metal tolerant Bacillus sp. EIKU23. J Hazard Mater Lett. https://doi.org/10.1016/j.hazl.2023.100101

Article  Google Scholar 

Nayarisseri A, Singh P, Singh SK (2018) Screening, isolation and characterization of biosurfactant producing Bacillus subtilis strain ANSKLAB03. Bioinformation 14:304–314. https://doi.org/10.6026/97320630014304

Article  PubMed  PubMed Central  Google Scholar 

Aboelkhair H, Diaz P, Attia A (2022) Biosurfactant production using Egyptian oil fields indigenous bacteria for microbial enhanced oil recovery. J Pet Sci Eng 208:109601. https://doi.org/10.1016/j.petrol.2021.109601

Article  CAS  Google Scholar 

Ravindran A, Sajayan A, Priyadharshini GB et al (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol 11:222. https://doi.org/10.3389/fmicb.2020.00222

Article  PubMed  PubMed Central  Google Scholar 

Shagufta S, Dharani PVD (2022) Effect of carbon and nitrogen sources on production of biosurfactant by bacterial species SPTSS1. AJMBES. https://doi.org/10.53550/AJMBES.2022.v24i01.005

Article  Google Scholar 

Satpute SK, Mone NS, Das P et al (2019) Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiol. https://doi.org/10.1186/s12866-019-1412-z

Article  PubMed  PubMed Central  Google Scholar 

Fariq A, Yasmin A (2020) Production, characterization and bioactivities of biosurfactants from newly isolated strictly halophilic bacteria. Process Biochem 98:1–10. https://doi.org/10.1016/j.procbio.2020.07.011

Article  CAS  Google Scholar 

Yan X, Gu S, Cui X et al (2019) Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microb Pathog 127:12–20. https://doi.org/10.1016/j.micpath.2018.11.039

Article  CAS  PubMed  Google Scholar 

Shukla SK, Rao TS (2017) An improved crystal violet assay for biofilm quantification in 96-well microtitre plate. Microbiology 16:199

Google Scholar 

Tiquia SM, Tam NFY, Hodgkiss IJ (1996) Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ Pollut 93:249–256. https://doi.org/10.1016/S0269-7491(96)00052-8

Article  CAS  PubMed  Google Scholar 

Hamouda RA, Alhumairi AM, Saddiq AA (2023) Simultaneous bioremediation of petroleum hydrocarbons and production of biofuels by the micro-green alga, cyanobacteria, and its consortium. Heliyon 9:e16656. https://doi.org/10.1016/j.heliyon.2023.e16656

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jemil N, Ben Ayed H, Manresa A et al (2017) Antioxidant properties, antimicrobial and anti-adhesive activities of DCS1 lipopeptides from Bacillus methylotrophicus DCS1. BMC Microbiol 17:144. https://doi.org/10.1186/s12866-017-1050-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu C, You Y, Zhao R et al (2017) Biosurfactant production from Pseudomonas taiwanensis L1011 and its application in accelerating the chemical and biological decolorization of azo dyes. Ecotoxicol Environ Saf 145:8–15. https://doi.org/10.1016/j.ecoenv.2017.07.012

Article  CAS  PubMed  Google Scholar 

Barakat KM, Hassan SWM, Darwesh OM (2017) Biosurfactant production by haloalkaliphilic Bacillus strains isolated from Red Sea. Egypt Egypt J Aquat Res 43:205–211. https://doi.org/10.1016/j.ejar.2017.09.001

Article  Google Scholar 

Dasgupta A, Saha S, Ganguli P et al (2023) Characterization of pumilacidin, a lipopeptide biosurfactant produced from Bacillus pumilus NITDID1 and its prospect in bioremediation of hazardous pollutants. Arch Microbiol 205:274. https://doi.org/10.1007/s00203-023-03619-4

Article  CAS  PubMed  Google Scholar 

Huczyński A, Ratajczak-Sitarz M, Stefańska J et al (2011) Reinvestigation of the structure of monensin A phenylurethane sodium salt based on X-ray crystallographic and spectroscopic studies, and its activity against hospital strains of methicillin-resistant S. epidermidis and S. aureus. J Antibiot (Tokyo) 64:249–256. https://doi.org/10.1038/ja.2010.167

Article  CAS  PubMed  Google Scholar 

Sharma S, Verma R, Pandey LM (2019) Crude oil degradation and biosurfactant production abilities of isolated Agrobacterium fabrum SLAJ731. Biocatal Agric Biotechnol 21:101322. https://doi.org/10.1016/j.bcab.2019.101322

Article  Google Scholar 

Wu B, Xiu J, Yu L et al (2022) Biosurfactant production by Bacillus subtilis SL and its potential for enhanced oil recovery in low permeability reservoirs. Sci Rep 12:7785. https://doi.org/10.1038/s41598-022-12025-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Faria AF, Teodoro-Martinez DS, de Oliveira Barbosa GN et al (2011) Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem 46:1951–1957. https://doi.org/10.1016/j.procbio.2011.07.001

Comments (0)

No login
gif