An Adaptive Neural Network Algorithm with Quasi Opposition-Based Learning for Numerical Optimization Problems

Abd Elaziz M, Oliva D, Xiong S. An improved opposition-based sine cosine algorithm for global optimization. Expert Syst Appl. 2017;90:484–500.

Article  MATH  Google Scholar 

Arora S, Singh S. Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput. 2019;23:715–34.

Article  MATH  Google Scholar 

Ayad J. Survey on neural networks in networking: Applications and advancements. Babylonian Journal of Networking. 2024;2024:135–47.

Article  MATH  Google Scholar 

Balasubramani K, Natarajan UM. Improving bus passenger flow prediction using Bi-LSTM fusion model and SMO algorithm. Babylonian Journal of Artificial Intelligence. 2024;2024:73–82.

Article  Google Scholar 

Braik M, Hammouri A, Atwan J, Al-Betar MA, Awadallah MA. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl-Based Syst. 2022;243: 108457.

Article  Google Scholar 

Chandran V, Mohapatra P. An improved tunicate swarm algorithm with random opposition based learning for global optimization problems. Opsearch. 2024;1–26.https://doi.org/10.1007/s12597-024-00828-3

Chopra N, Ansari MM. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Syst Appl. 2022;198: 116924.

Article  Google Scholar 

Civicioglu P, Besdok E. Colony based search algorithm for numerical optimization. Appl Soft Comput. 2024;151: 111162.

Article  MATH  Google Scholar 

Deb K. Optimal design of a welded beam via genetic algorithms. AIAA J. 1991;29(11):2013–5.

Article  MATH  Google Scholar 

Derrac J, Garca S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput. 2011;1(1):3–18.

Article  MATH  Google Scholar 

Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Comput Intell Mag. 2006;1(4):28–39.

Article  MATH  Google Scholar 

Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm-A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures. 2012;110:151–66.

Article  Google Scholar 

Ewees AA, Abd Elaziz M, Houssein EH. Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl. 2018;112:156–72.

Article  MATH  Google Scholar 

Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst Appl. 2020;152: 113377.

Article  Google Scholar 

Gupta S, Deep K. A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl. 2019;119:210–30.

Article  MATH  Google Scholar 

Gupta S, Deep K. An efficient grey wolf optimizer with opposition-based learning and chaotic local search for integer and mixed-integer optimization problems. Arab J Sci Eng. 2019;44(8):7277–96.

Article  MATH  Google Scholar 

Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. Harris hawks optimization: Algorithm and applications. Futur Gener Comput Syst. 2019;97:849–72.

Article  MATH  Google Scholar 

Haeri Boroujeni SP, Pashaei E. A hybird chimp optimization algorithm and generalized normal distribution algorithm with opposition based learninig strategy for solving data clustering problems. Iran Journal of Computer Science. 2024;7(1):65–101.

Article  Google Scholar 

Ibrahim RA, Abd Elaziz M, Lu S. Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Syst Appl. 2018;108:1–27.

Article  MATH  Google Scholar 

Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing Journal. 2008;8(1):687–97.

Article  MATH  Google Scholar 

Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks. 1995;4:1942–1948.

Kirkpatrick S, Gelatt CD Jr, Vecchi MP. Optimization by simulated annealing science. 1983;220(4598):671–80.

Google Scholar 

Kouidere A, Damak M. Using neural networks to model complex mathematical functions. Mesopotamian Journal of Big Data. 2022;2022:51–4. https://doi.org/10.58496/MJBD/2022/007

Kouka N, BenSaid F, Fdhila R, Fourati R, Hussain A, Alimi AM. A novel approach of many-objective particle swarm optimization with cooperative agents based on an inverted generational distance indicator. Inf Sci. 2023;623:220–41.

Article  Google Scholar 

Kundu T, Deepmala, Jain PK. A hybrid salp swarm algorithm based on TLBO for reliability redundancy allocation problems. Appl Intell. 2022;52:12630–67.

Lei D, Cai L, Wu F. Imperialist competition algorithm with quasi-opposition based learniing for function optimization and engineering design problems. Automatika. 2024;65(4):1640–65.

Article  MATH  Google Scholar 

Li S, Chen H, Wang M, Heidari AA, Mirjalili S. Slime mould algorithm: A new method for stochastic optimization. Futur Gener Comput Syst. 2020;111:300–23.

Article  MATH  Google Scholar 

Luo R, Peng Z, Hu J, Ghosh BK. Adaptive optimal control of affine nonlinear systems via identifier-critic neural network approximation with relaxed PE conditions. Neural Netw. 2023;167:588–600.

Article  MATH  Google Scholar 

Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. 2016;27(4):1053–73.

Article  MathSciNet  MATH  Google Scholar 

Mirjalili S, Lewis A. The Whale Optimization Algorithm. Adv Eng Softw. 2016;95:51–67.

Article  MATH  Google Scholar 

Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimizer. Adv Eng Softw. 2014;69:46–61.

Article  MATH  Google Scholar 

Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst. 2015;89:228–49.

Article  MATH  Google Scholar 

Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw. 2017;114:163–91.

Article  MATH  Google Scholar 

Mirjalili S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl-Based Syst. 2016;96:120–33.

Article  MATH  Google Scholar 

Mohamed AW. A novel differential evolution algorithm for solving constrained engineering optimization problems. J Intell Manuf. 2018;29(3):659–92.

Article  MATH  Google Scholar 

Qamar R, Zardari BA. Artificial neural networks: An overview. Mesopotamian Journal of Computer Science. 2023;2023:124–33.

MATH  Google Scholar 

Rahnamayan S, Tizhoosh HR, Salama MM. Quasi-oppositional differential evolution. In: 2007 IEEE congress on evolutionary computation. 2007. (pp. 2229–2236). IEEE.

Rao RV, Savsani VJ, Vakharia DP. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. CAD Computer Aided Design. 2011;43(3):303–15.

Article  MATH  Google Scholar 

Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci. 2009;179(13):2232–48.

Article  MATH  Google Scholar 

Sadollah A, Sayyaadi H, Yadav A. A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural Network Algorithm. Applied Soft Computing Journal. 2018;71:747–82.

Article  MATH  Google Scholar 

Savsani P, Savsani V. Passing vehicle search (PVS): A novel metaheuristic algorithm. Appl Math Model. 2016;40(5–6):3951–78.

Article  MATH  Google Scholar 

Simon D. Biogeography-Based Optimization. IEEE Trans Evol Comput. 2008;12(6):702–13.

Article  MATH  Google Scholar 

Tizhoosh HR. Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06). 2005. (Vol. 1, pp. 695–701). IEEE.

Truong KH, Nallagownden P, Baharudin Z, Vo DN. A quasi-oppositional-chaotic symbiotic organisms search algorithm for global optimization problems. Appl Soft Comput. 2019;77:567–83.

Article  Google Scholar 

Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1(1):67–82.

Article  MATH  Google Scholar

Comments (0)

No login
gif