Innovative Deep Learning Framework for Accurate Plant Disease Detection and Crop Productivity Enhancement

Harakannanavar SS, Rudagi JM, Puranikmath VI, Siddiqua A, Pramodhini R. Plant leaf disease detection using computer vision and machine learning algorithms. Global Trans Proceed. 2022;3(1):305–10. https://doi.org/10.1016/j.gltp.2022.03.016.

Article  Google Scholar 

Pandian JA, Kanchanadevi K, Kumar VD, Jasińska E, Goňo R, Leonowicz Z, et al. A five convolutional layer deep convolutional neural network for plant leaf disease detection. Electronics. 2022;11(8):1266. https://doi.org/10.3390/electronics11081266.

Article  Google Scholar 

Nagaraju M, Chawla P, Upadhyay S, Tiwari R. Convolution network model based leaf disease detection using augmentation techniques. Expert Syst. 2022;39(4):e12885. https://doi.org/10.1111/exsy.12885.

Article  Google Scholar 

Sai Reddy B, Neeraja S. Plant leaf disease classification and damage detection system using deep learning models. Multimed Tools Appl. 2022;81(17):24021–40. https://doi.org/10.1007/s11042-022-12147-0.

Article  MATH  Google Scholar 

Vallabhajosyula S, Sistla V, Kolli VK. Transfer learning-based deep ensemble neural network for plant leaf disease detection. J Plant Dis Prot. 2022;129(3):545–58. https://doi.org/10.1007/s41348-021-00465-8.

Article  Google Scholar 

Pandian J, Kumar V, Geman O, Hnatiuc M, Arif M, Kanchanadevi K. Plant disease detection using deep convolutional neural network. Appl Sci. 2022;12(14):6982. https://doi.org/10.3390/app12146982.

Article  Google Scholar 

Fan X, Luo P, Mu Y, Zhou R, Tjahjadi T, Ren Y. Leaf image based plant disease identification using transfer learning and feature fusion. Comput Electron Agric. 2022;196:106892. https://doi.org/10.1016/j.compag.2022.106892.

Article  MATH  Google Scholar 

Pacal I. Enhancing crop productivity and sustainability through disease identification in maize leaves: exploiting a large dataset with an advanced vision transformer model. Expert Syst Appl. 2024;238:122099. https://doi.org/10.1016/j.eswa.2023.122099.

Article  MATH  Google Scholar 

Towfek SK, Khodadadi N. Deep convolutional neural network and metaheuristic optimization for disease detection in plant leaves. J Intelligent Syst Internet Things. 2023;10(1):66–75. https://doi.org/10.54216/jisiot.100105.

Article  Google Scholar 

Nawaz M, Nazir T, Javed A, Tawfik Amin S, Jeribi F, Tahir A. CoffeeNet: a deep learning approach for coffee plant leaves diseases recognition. Expert Syst Appl. 2024;237:121481. https://doi.org/10.1016/j.eswa.2023.121481.

Article  Google Scholar 

Atila Ü, Uçar M, Akyol K, Uçar E. Plant Leaf disease classification using EfficientNet deep learning model. Eco Inform. 2021;61:101182. https://doi.org/10.1016/j.ecoinf.2020.101182.

Article  MATH  Google Scholar 

Kumar Sahu S, Pandey M. An optimal hybrid multiclass SVM for plant leaf disease detection using spatial fuzzy C-means model. Expert Syst Appl. 2023;214:118989. https://doi.org/10.1016/j.eswa.2022.118989.

Article  MATH  Google Scholar 

Pal A, Kumar V. Agridet: Plant leaf disease severity classification using agriculture detection framework. Eng Appl Artif Intell. 2023;119:105754. https://doi.org/10.1016/j.engappai.2022.105754.

Article  Google Scholar 

Khanna M, Singh LK, Thawkar S, Goyal M. Planet: A robust deep convolutional neural network model for plant leaves disease recognition. Multimed Tools Appl. 2024;83(2):4465–517. https://doi.org/10.1007/s11042-023-15809-9.

Article  MATH  Google Scholar 

Singla P, Kalavakonda V, Senthil R. Detection of plant leaf diseases using deep convolutional neural network models. Multimed Tools Appl. 2024. https://doi.org/10.1007/s11042-023-18099-3.

Article  MATH  Google Scholar 

Naeem S, Ali A, Chesneau C, Tahir MH, Jamal F, Sherwani RA, et al. The classification of medicinal plant leaves based on multispectral and texture feature using machine learning approach. Agronomy. 2021;11(2):263. https://doi.org/10.3390/agronomy11020263.

Article  MATH  Google Scholar 

Hassan SM, Maji AK, Jasiński M, Leonowicz Z, Jasińska E. Identification of plant-leaf diseases using CNN and transfer-learning approach. Electronics. 2021;10(12):1388. https://doi.org/10.3390/electronics10121388.

Article  MATH  Google Scholar 

Argüeso D, Picon A, Irusta U, Medela A, San-Emeterio MG, Bereciartua A, et al. Few-shot learning approach for plant disease classification using images taken in the field. Comput Electron Agric. 2020;175:105542. https://doi.org/10.1016/j.compag.2020.105542.

Article  Google Scholar 

Kaur P, Harnal S, Gautam V, Singh MP, Singh SP. A novel transfer deep learning method for detection and classification of plant leaf disease. J Ambient Intell Humaniz Comput. 2023;14(9):12407–24. https://doi.org/10.1007/s12652-022-04331-9.

Article  MATH  Google Scholar 

Sanida T, Tsiktsiris D, Sideris A, Dasygenis M. A heterogeneous implementation for plant disease identification using deep learning. Multimed Tools Appl. 2022;81(11):15041–59. https://doi.org/10.1007/s11042-022-12461-7.

Article  MATH  Google Scholar 

Barbero F, Bodnar C, de Ocáriz Borde HS, Lio P. Sheaf attention networks. In NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations. 2022.

Mahesh Kumar G, Parthasarathy E. Development of an enhanced U-net model for brain tumor segmentation with optimized architecture. Biomed Signal Process Control. 2023;81:104427. https://doi.org/10.1016/j.bspc.2022.104427.

Article  MATH  Google Scholar 

Banik S, Dhabal D, Chan H, Manna S, Cherukara M, Molinero V, et al. CEGANN: crystal edge graph attention neural network for multiscale classification of materials environment. npj Computational Mater. 2023;9(1):23. https://doi.org/10.1038/s41524-023-00975-z.

Article  Google Scholar 

Begum SS, Syed H. GSAtt-CMNetV3: pepper leaf disease classification using osprey optimization. IEEE Access. 2024. https://doi.org/10.1109/ACCESS.2024.3358833.

Article  Google Scholar 

Dehghani M, Montazeri Z, Bektemyssova G, Malik OP, Dhiman G, Ahmed AE. Kookaburra Optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Biomimetics. 2023;8(6):470. https://doi.org/10.3390/biomimetics8060470.

Article  Google Scholar 

Aldakheel EA, Zakariah M, Alabdalall AH. Detection and identification of plant leaf diseases using YOLOv4. Front Plant Sci. 2024;22(15):1355941. https://doi.org/10.3389/fpls.2024.1355941.

Article  Google Scholar 

Shabrina NH, Indarti S, Maharani R, Kristiyanti DA, Prastomo N. A novel dataset of potato leaf disease in uncontrolled environment. Data Brief. 2024;1(52):109955. https://doi.org/10.1016/j.dib.2023.109955.

Article  Google Scholar 

Kaur P, Mishra AM, Goyal N, Gupta SK, Shankar A, Viriyasitavat W. A novel hybrid CNN methodology for automated leaf disease detection and classification. Expert Syst. 2024;11:e13543. https://doi.org/10.1111/exsy.13543.

Article  MATH  Google Scholar 

Dai G, Tian Z, Fan J, Sunil CK, Dewi C. DFN-PSAN: multi-level deep information feature fusion extraction network for interpretable plant disease classification. Comput Electron Agric. 2024;1(216):108481. https://doi.org/10.1016/j.compag.2023.108481.

Article  Google Scholar 

Dai G, Fan J, Dewi C. ITF-WPI: image and text based cross-modal feature fusion model for wolfberry pest recognition. Comput Electron Agric. 2023;1(212):108129. https://doi.org/10.1016/j.compag.2023.108129.

Article  Google Scholar 

Dai G, Fan J, Tian Z, Wang C. PPLC-Net: Neural network-based plant disease identification model supported by weather data augmentation and multi-level attention mechanism. J King Saud Univ- Comput Inf Sci. 2023;35(5):101555. https://doi.org/10.1016/j.jksuci.2023.101555.

Article  Google Scholar 

Dai G, Fan J. An industrial-grade solution for crop disease image detection tasks. Front Plant Sci. 2022;27(13):921057. https://doi.org/10.3389/fpls.2022.921057.

Article  MATH  Google Scholar 

Comments (0)

No login
gif