Weissler AM, Peeler RG, Roehll WH Jr (1961) Relationships between left ventricular ejection time, stroke volume, and heart rate in normal individuals and patients with cardiovascular disease. Am Heart J 62:367–378
Article CAS PubMed Google Scholar
Weissler AM, Harris LC, White GD (1963) Left ventricular ejection time index in man. J Appl Physiol 18:919–923
Article CAS PubMed Google Scholar
Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2005) Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med 31(9):1195–1201
Singer M (2006) The FTc is not an accurate marker of left ventricular preload. Intensive Care Med 32(7):1089 (author reply 1091)
Chemla D, Nitenberg A (2006) Systolic duration, preload, and afterload: Is a new paradigm needed? Intensive Care Med 32(9):1454–1455 (author reply 1456–1457)
Barjaktarevic I, Toppen WE, Hu S, Montoya EA, Ong S, Buhr R, David IJ, Wang T, Rezayat T, Chang SY (2018) Ultrasound assessment of the change in carotid corrected flow time in fluid responsiveness in undifferentiated shock. Crit Care Med 11:1040–1046
Jalil B, Thompson P, Cavallazzi R, Marik P, Mann J, El Kersh K, Guardiola J, Saad M (2017) Comparing changes in carotid flow time and stroke volume induced by passive leg raising. Am J Med Sci 355(2):168–173
Zhou K, Ran S, Guo Y, Ye H (2024) Carotid artery ultrasound for assessing fluid responsiveness in patients undergoing mechanical ventilation with low tidal volume and preserved spontaneous breathing. Shock 61(3):360–366
Kimura A, Suehiro K, Juri T, Tanaka K, Mori T (2021) Changes in corrected carotid flow time induced by recruitment maneuver predict fluid responsiveness in patients undergoing general anesthesia. J Clin Monit Comput 36(4):1069–1077
Jung S, Kim J, Na S, Nam WS, Kim D-H (2021) Ability of carotid corrected flow time to predict fluid responsiveness in patients mechanically ventilated using low tidal volume after surgery. J Clin Med 10(12):2676
Article CAS PubMed PubMed Central Google Scholar
Blanco P (2020) Rationale for using the velocity–time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings. Ultrasound J 12:1–9
Abraham TP, Laskowski C, Zhan WZ, Belohlavek M, Martin EA, Greenleaf JF, Sieck GC (2003) Myocardial contractility by strain echocardiography: comparison with physiological measurements in an in vitro model. Am J Physiol Heart Circ Physiol 285(6):H2599-2604
Article CAS PubMed Google Scholar
Weidemann F, Jamal F, Sutherland GR, Claus P, Kowalski M, Hatle L, De Scheerder I, Bijnens B, Rademakers FE (2002) Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol 283(2):H792-799
Article CAS PubMed Google Scholar
Weidemann F, Jamal F, Kowalski M, Kukulski T, D’Hooge J, Bijnens B, Hatle L, De Scheerder I, Sutherland GR (2002) Can strain rate and strain quantify changes in regional systolic function during dobutamine infusion, B-blockade, and atrial pacing–implications for quantitative stress echocardiography. J Am Soc Echocardiogr 15(5):416–424
Greenberg NL, Firstenberg MS, Castro PL, Main M, Travaglini A, Odabashian JA, Drinko JK, Rodriguez LL, Thomas JD, Garcia MJ (2002) Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility. Circulation 105(1):99–105
Rösner A, Bijnens B, Hansen M, How OJ, Aarsaether E, Müller S, Sutherland GR, Myrmel T (2009) Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate. Eur J Echocardiogr 10(2):271–277
Morris JJ 3rd, Pellom GL, Murphy CE, Salter DR, Goldstein JP, Wechsler AS (1987) Quantification of the contractile response to injury: assessment of the work-length relationship in the intact heart. Circulation 76(3):717–727
Sonnenblick EH (1962) Force-velocity relations in mammalian heart muscle. Am J Physiol 202:931–939
Article CAS PubMed Google Scholar
Burns AT, La Gerche A, D’Hooge J, MacIsaac AI, Prior DL (2010) Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr 11(3):283–289
Shaver JA, Kroetz FW, Leonard JJ, Paley HW (1968) The effect of steady-state increases in systemic arterial pressure on the duration of left ventricular ejection time. J Clin Invest 47(1):217–230
Article CAS PubMed PubMed Central Google Scholar
Singer M, Allen MJ, Webb AR, Bennett ED (1991) Effects of alterations in left ventricular filling, contractility, and systemic vascular resistance on the ascending aortic blood velocity waveform of normal subjects. Crit Care Med 19(9):1138–1145
Article CAS PubMed Google Scholar
Singer M, Bennett ED (1991) Noninvasive optimization of left ventricular filling using esophageal Doppler. Crit Care Med 19(9):1132–1137
Article CAS PubMed Google Scholar
van Houte J, Eerdekens R, Manning F, Te Pas M, Houterman S, Wijnbergen I, Montenij L, Tonino P, Bouwman A (2024) Is the corrected carotid flow time a clinically acceptable surrogate hemodynamic parameter for the left ventricular ejection time? Ultrasound Med Biol 50(4):528–535
Kenny J-ÉS, Barjaktarevic I, Mackenzie DC, Eibl AM, Parrotta M, Long BF, Eibl JK (2020) Diagnostic characteristics of 11 formulae for calculating corrected flow time as measured by a wearable Doppler patch. Intensive Care Med Exp 8(1):1–11
Kuznetsova T, Herbots L, Richart T, D’Hooge J, Thijs L, Fagard RH, Herregods MC, Staessen JA (2008) Left ventricular strain and strain rate in a general population. Eur Heart J 29(16):2014–2023
Stöhr EJ, Stembridge M, Esformes JI (2015) In vivo human cardiac shortening and lengthening velocity is region dependent and not coupled with heart rate: ‘longitudinal’ strain rate markedly underestimates apical contribution. Exp Physiol 100(5):507–518
Biering-Sørensen T, Querejeta Roca G, Hegde SM, Shah AM, Claggett B, Mosley TH Jr, Butler KR Jr, Solomon SD (2018) Left ventricular ejection time is an independent predictor of incident heart failure in a community-based cohort. Eur J Heart Fail 20(7):1106–1114
Alhakak AS, Teerlink JR, Lindenfeld J, Böhm M, Rosano GMC, Biering-Sørensen T (2021) The significance of left ventricular ejection time in heart failure with reduced ejection fraction. Eur J Heart Fail 23(4):541–551
Reant P, Dijos M, Donal E, Mignot A, Ritter P, Bordachar P, Dos Santos P, Leclercq C, Roudaut R, Habib G (2010) Systolic time intervals as simple echocardiographic parameters of left ventricular systolic performance: correlation with ejection fraction and longitudinal two-dimensional strain. Eur J Echocardiogr 11(10):834–844
Haiden A, Eber B, Weber T (2014) U-shaped relationship of left ventricular ejection time index and all-cause mortality. Am J Hypertens 27(5):702–709
Article CAS PubMed Google Scholar
García MIM, González PG, Romero MG, Cano AG, Oscier C, Rhodes A, Grounds RM, Cecconi M (2015) Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med 41(7):1247–1255
Kim ES, Sharma AM, Scissons R, Dawson D, Eberhardt RT, Gerhard-Herman M, Hughes JP, Knight S, Marie Kupinski A, Mahe G et al (2020) Interpretation of peripheral arterial and venous Doppler waveforms: a consensus statement from the Society for Vascular Medicine and Society for Vascular Ultrasound. Vasc Med 25(5):484–506
Comments (0)