Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. ISSN 0036-8075. https://doi.org/10.1126/science.1092385
Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18(2):134–147. https://doi.org/10.1038/nri.2017.105
Article CAS PubMed Google Scholar
Rai G (2019) NETosis: immunity, pathogenesis and therapeutics. Elsevier, London
Tan C, Aziz M, Wang P (2021) The vitals of NETs. J Leukoc Biol 110(4):797–808. https://doi.org/10.1002/JLB.3RU0620-375R
Article CAS PubMed Google Scholar
Demkow U (2023) Molecular mechanisms of neutrophil extracellular trap (NETs) degradation. Int J Mol Sci 24(5). https://doi.org/10.3390/ijms24054896
Denning NL et al (2019) DAMPs and NETs in sepsis. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.02536
Zhu CL et al (2022) Dysregulation of neutrophil death in sepsis. Front Immunol 13:963955. https://doi.org/10.3389/fimmu.2022.963955
Article CAS PubMed PubMed Central Google Scholar
Czaikoski PG et al (2016) Neutrophil Extracellular traps induce organ damage during experimental and clinical sepsis. PLoS ONE 11(2):e0148142. https://doi.org/10.1371/journal.pone.0148142
Article CAS PubMed PubMed Central Google Scholar
Funchal GA et al (2015) Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils. PloS One 10(4). https://doi.org/10.1371/journal.pone.0124082
Narasaraju T et al (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179(1):199–210. https://doi.org/10.1016/j.ajpath.2011.03.013
Article CAS PubMed PubMed Central Google Scholar
Zuo Y et al (2020) Neutrophil extracellular traps in COVID-19. JCI Insight 5(11). ISSN 2379-3708. https://doi.org/10.1172/jci.insight.138999
Ackermann M et al (2021) Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ 28(11):3125–3139. https://doi.org/10.1038/s41418-021-00805-z
Article CAS PubMed PubMed Central Google Scholar
Ventura-Santana E et al (2022) Neutrophil extracellular traps, sepsis and COVID-19—a tripod stand. Front Immunol 13:902206. https://doi.org/10.3389/fimmu.2022.902206
Article CAS PubMed PubMed Central Google Scholar
Veras FP et al (2020) SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med 217(12). https://doi.org/10.1084/jem.20201129
Laing AG et al (2020) A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med 26(10):1623–1635. https://doi.org/10.1038/s41591-020-1038-6
Article CAS PubMed Google Scholar
Middleton EA et al (2020) Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 136(10):1169–1179. https://doi.org/10.1182/blood.2020007008
Article CAS PubMed Google Scholar
González-Jiménez P et al (2023) Neutrophil extracellular traps and platelet activation for identifying severe episodes and clinical trajectories in COVID-19. Int J Mol Sci 24(7). https://doi.org/10.3390/ijms24076690
Gupta S et al (2018) A High-throughput real-time imaging technique to quantify NETosis and distinguish mechanisms of cell death in human neutrophils. J Immunol 200(2):869–879. https://doi.org/10.4049/jimmunol.1700905
Article CAS PubMed Google Scholar
Kim JS et al (2021) Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics 11(1):316–329. https://doi.org/10.7150/thno.49713
Article CAS PubMed PubMed Central Google Scholar
Barnes BJ et al (2020) Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med 217(6). https://doi.org/10.1084/jem.20200652
Coomes EA, Haghbayan H (2020) Interleukin-6 in Covid-19: a systematic review and meta-analysis. Rev Med Virol 30(6):1–9
Article CAS PubMed Google Scholar
Potere N et al (2021) The role of IL-6 and IL-6 blockade in COVID-19. Expert Rev Clin Immunol 17(6):601–618. https://doi.org/10.1080/1744666X.2021.1919086
Article CAS PubMed Google Scholar
Del Valle DM et al (2020) An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 26(10):1636–1643. https://doi.org/10.1038/s41591-020-1051-9
Article CAS PubMed PubMed Central Google Scholar
de Diego C et al (2024) What is the actual relationship between neutrophil extracellular traps and COVID-19 severity? A longitudinal study. Respir Res 25(1):48. https://doi.org/10.1186/s12931-023-02650-9
Article CAS PubMed PubMed Central Google Scholar
Veras FP et al (2023) Targeting neutrophils extracellular traps (NETs) reduces multiple organ injury in a COVID-19 mouse model. Respir Res 24(1):66. https://doi.org/10.1186/s12931-023-02336-2
Article CAS PubMed PubMed Central Google Scholar
Bliden K et al (2020) Abstract 16676: heightened platelet function: an unrecognized component of the covid hypercoagulability state. Circulation 142(Suppl_3):A16676–A16676. https://doi.org/10.1161/circ.142.suppl_3.16676
Omarjee L et al (2020) Can Ticagrelor be used to prevent sepsis-induced coagulopathy in COVID-19? Clin Immunol 216:108468. https://doi.org/10.1016/j.clim.2020.108468
Article CAS PubMed PubMed Central Google Scholar
Lapponi MJ et al (2013) Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs. J Pharmacol Exp Ther 345(3):430–437. ISSN 0022-3565
Wan T et al (2020) Acetylsalicylic acid promotes corneal epithelium migration by regulating neutrophil extracellular traps in alkali burn. Front Immunol 11:551057. https://doi.org/10.3389/fimmu.2020.551057
Article CAS PubMed PubMed Central Google Scholar
Tilgner J et al (2016) Aspirin, but not tirofiban displays protective effects in endotoxin induced lung injury. PLoS ONE 11(9):e0161218. https://doi.org/10.1371/journal.pone.0161218
Article CAS PubMed PubMed Central Google Scholar
Group RC (2022) Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 399(10320):143–151. https://doi.org/10.1016/S0140-6736(21)01825-0
Chow JH et al (2022) Association of early aspirin use with in-hospital mortality in patients with moderate COVID-19. JAMA Netw Open 5(3):e223890. ISSN 2574-3805. https://doi.org/10.1001/jamanetworkopen.2022.3890
Sexton TR et al (2018) Ticagrelor reduces thromboinflammatory markers in patients with pneumonia. JACC Basic Transl Sci 3(4):435–449. https://doi.org/10.1016/j.jacbts.2018.05.005
Article PubMed PubMed Central Google Scholar
Butt JH et al (2022) Ticagrelor and the risk of Staphylococcus aureus bacteraemia and other infections. Eur Heart J Cardiovasc Pharmacother 8(1):13–19. https://doi.org/10.1093/ehjcvp/pvaa099
Tantry US et al (2021) Aspirin as an adjunctive pharmacologic therapy option for COVID-19: anti-inflammatory, antithrombotic, and antiviral effects all in one agent. J Exp Pharmacol 13:957–970. https://doi.org/10.2147/JEP.S330776
Article PubMed PubMed Central Google Scholar
Berger JS et al (2022) Effect of P2Y12 inhibitors on survival free of organ support among non-critically ill hospitalized patients with COVID-19: a randomized clinical trial. JAMA 327(3):227–236. https://doi.org/10.1001/jama.2021.23605
Article CAS PubMed PubMed Central Google Scholar
Manfredi AA, Rovere-Querini P, D’Angelo A, Maugeri N (2017) Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol Res 123:146–156. https://doi.org/10.1016/j.phrs.2016.08.008
Comments (0)