Preclinical and Clinical-Scale Magnetic Particle Imaging of Natural Killer Cells: in vitro and ex vivo Demonstration of Cellular Sensitivity, Resolution, and Quantification

Toffoli EC, Sheikhi A, Höppner YD et al (2021) Natural killer cells and anti-cancer therapies: reciprocal effects on Immune function and therapeutic response. Cancers (Basel) 13:711

Article  CAS  PubMed  Google Scholar 

Shimasaki N, Jain A, Campana D (2020) NK cells for cancer immunotherapy. Nat Rev Drug Discov 19:200–218

Article  CAS  PubMed  Google Scholar 

Valipour B, Velaei K, Abedelahi A et al (2019) NK cells: an attractive candidate for cancer therapy. J Cell Physiol 234(11):19352–19365

Article  CAS  PubMed  Google Scholar 

Buddingh EP, Schilham MW, Ruslan SEN et al (2011) Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15-activated allogeneic and autologous NK cells. Cancer Immunol Immunother 60:575–586

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang TC, Carter RA, Li Y et al (2017) The neoepitope landscape in pediatric cancers. Genome Med 9:1–12

Article  Google Scholar 

Zhang J, Wang T (2021) Immune cell landscape and immunotherapy of medulloblastoma. Pediatr Invest 5(4):299–309

Article  Google Scholar 

Liu S, Galat V, Galat Y et al (2021) NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol 14:7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khatua S, Cooper LJN, Sandberg DI et al (2020) Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro Oncol 22:1214–1225

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nersesian S, Schwartz SL, Grantham SR et al (2021) NK cell infiltration is associated with improved overall survival in solid cancers: a systematic review and meta-analysis. Transl Oncol 14(1):100930

Article  CAS  PubMed  Google Scholar 

Nayyar G, Chu Y, Cairo MS (2019) Overcoming resistance to natural killer cell-based immunotherapies for solid tumors. Front Oncol 9:51

Article  PubMed  PubMed Central  Google Scholar 

Guma SR, Lee DA, Ling Y, Gordon N, Kleinerman ES (2014) Aerosol interleukin-2 induces natural killer cell proliferation in the lung and combination therapy improves the survival of mice with osteosarcoma lung metastasis. Pediatr Blood Cancer 61(8):1362–1368

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bulte JW, Daldrup-Link HE (2018) Clinical tracking of cell transfer and cell transplantation: trials and tribulations. Radiology 289(3):604–615

Article  PubMed  Google Scholar 

Iv M, Samghabadi P, Holdsworth S et al (2019) Quantification of macrophages in high-grade gliomas by using ferumoxytol-enhanced MRI: a pilot study. Radiology 290(1):198–206

Article  PubMed  Google Scholar 

Ahrens ET, Bulte JWM (2013) Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol 13(10):755–763

Article  CAS  PubMed  Google Scholar 

Kennis BA, Michel KA, Brugmann WB et al (2019) Monitoring of intracerebellarly-administered natural killer cells with fluorine-19 MRI. Journal of neuro-oncology 142:395–407

Article  PubMed  PubMed Central  Google Scholar 

Bouchlaka MN, Ludwig KD, Gordon JW et al (2016) 19F-MRI for monitoring human NK cells in vivo. Oncoimmunology 5(5):1143996

Article  Google Scholar 

Ahrens ET, Helfer BM, O’Hanlon CF, Schirda C (2014) Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med 72(6):1696–1701

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mattingly E, Mason E, Sliwiak M, Wald LL (2022) Drive and receive coil design for a human-scale MPI system. Int J Magn Part Imaging 8(1).  https://doi.org/10.18416/IJMPI.2022.2203075

Gräser M, Thieben F, Szwargulski P et al (2019) Human-sized magnetic particle imaging for brain applications. Nat Commun 10(1):1936

Article  Google Scholar 

Le TA, Bui MP, Gadelmowla KM, Oh S, Yoon J (2023) First human-scale magnetic particle imaging system with superconductor. Int J Magn Part Imaging 9(1).  https://doi.org/10.18416/IJMPI.2023.2303032

Mason EE, Barcikowski E, Carl J et al (2024) Preliminary results: large bore clinical MPI system imaging human head-sized FOVs. Int J Magn Part Imaging 10(1). https://www.journal.iwmpi.org/index.php/iwmpi/article/view/768

Zheng B, von See MP, Yu E et al (2016) Quantitative MPI monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 6(3):291–301

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corby F, Gevaert JJ, Barrett JW et al (2023) In vivo tracking of adenoviral-transduced iron oxide-labeled bone marrow-derived dendritic cells using magnetic particle imaging. Eur Radio Ex 7(1):42

Google Scholar 

Makela AV, Schott MA, Sehl OC (2022) Tracking the fates of iron-labeled tumor cells in vivo using magnetic particle imaging. Nanoscale Adv 4(17):3617–3623

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu LC, Zhang Y, Steinberg G et al (2019) A review of magnetic particle imaging and perspectives on neuroimaging. Am J Neuroradiol 40(2):206–212

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivera-Rodriguez A, Hoang-Minh LB, Chiu-Lam A et al (2021) Tracking adoptive T cell immunotherapy using magnetic particle imaging. Nanotheranostics 5(4):431

Article  PubMed  PubMed Central  Google Scholar 

Wu WE, Chang E, Jin L et al (2023) Multimodal in vivo Tracking of Chimeric Antigen Receptor T Cells in Preclinical Glioblastoma models. Invest Radiol 58(6):388–395

Article  CAS  PubMed  Google Scholar 

Smirnov P (2009) Cellular magnetic resonance imaging using superparamagnetic anionic iron oxide nanoparticles: applications to in vivo trafficking of lymphocytes and cell-based anticancer therapy. Inflamm Cancer: Methods Protocols 2:333–353

Article  Google Scholar 

Waiczies S, Niendorf T, Lombardi G (2017) Labeling of cell therapies: How can we get it right? Oncoimmunology 6(10):1345403

Article  Google Scholar 

International Organization for Standardization (2018) Nanotechnologies – In vitro MTS assay for measuring the cytotoxic effect of nanoparticles (19007)

Sehl OC, Tiret B, Berih MA et al (2022) MPI region of interest (ROI) analysis and quantification of iron in different volumes. Int J Magn Part Imaging 8(1)

Helfer BM, Ponomarev V, Patrick PS et al (2021) Options for imaging cellular therapeutics in vivo: a multi-stakeholder perspective. Cytotherapy 23(9)757-773. https://doi.org/10.1016/j.jcyt.2021.02.005.

Lechermann LM, Lau D, Attili B, Aloj L, Gallagher FA (2021) In vivo cell tracking using PET: opportunities and challenges for clinical translation in oncology. Cancers 13(16):4042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacob J, Volpe A, Peng Q et al (2023) Radiolabelling of polyclonally expanded human regulatory T cells (Treg) with 89Zr-oxine for medium-term in vivo cell tracking. Molecules 28(3)

Santos AJM, Boucrot E (2018) Probing endocytosis during the cell cycle with minimal experimental perturbation. Clathrin-Mediated Endocytosis: Methods Protocols 23–35.  https://doi.org/10.1007/978-1-4939-8719-1_3

Boddington S, Henning TD, Sutton EJ, Daldrup-Link HE (2008) Labeling stem cells with fluorescent dyes for non-invasive detection with optical imaging. JoVE (14):686

Google Scholar 

Zhu Y, Li W, Li Q et al (2009) Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon 47(5):1351–1135

Gevaert J, Van Beek K, Sehl OC, Foster PJ (2022) VivoTrax + improves the detection of cancer cells with magnetic particle imaging. Int J Magn Part Imaging 8(1). https://doi.org/10.18416/IJMPI.2022.2203084

Bulte JW (2024) Direct versus Indirect Labeling for Chimeric Antigen Receptor T-Cell Tracking Using PET. Radiology 310(2):240241

Article  Google Scholar 

Comments (0)

No login
gif