The conserved protein DopA is required for growth, drug tolerance and virulence in Aspergillus fumigatus

Alkhayyat F, Chang Kim S, Yu J-H (2015) Genetic control of asexual development in aspergillus fumigatus. Adv Appl Microbiol 90:93–107. https://doi.org/10.1016/bs.aambs.2014.09.004

Article  CAS  PubMed  Google Scholar 

Baltussen TJH, Zoll J, Verweij PE, Melchers WJG (2020) Molecular mechanisms of Conidial Germination in Aspergillus spp. Microbiol Mol Biol Rev 84:e00049–e00019. https://doi.org/10.1128/MMBR.00049-19

Article  CAS  PubMed  Google Scholar 

Barbosa S, Pratte D, Schwarz H et al (2010) Oligomeric Dop1p is part of the endosomal Neo1p-Ysl2p-Arl1p membrane remodeling complex. Traffic 11:1092–1106. https://doi.org/10.1111/j.1600-0854.2010.01079.x

Article  CAS  PubMed  Google Scholar 

Beer KB, Wehman AM (2017) Mechanisms and functions of extracellular vesicle release in vivo —what we can learn from flies and worms. Cell Adhes Migr 11:135–150. https://doi.org/10.1080/19336918.2016.1236899

Article  CAS  Google Scholar 

Beer KB, Rivas-Castillo J, Kuhn K et al (2018) Extracellular vesicle budding is inhibited by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry. Proc Natl Acad Sci 115. https://doi.org/10.1073/pnas.1714085115

Bongomin F, Gago S, Oladele RO, Denning DW (2017) Global and multi-national prevalence of fungal diseases-Estimate Precision. J Fungi (Basel Switzerland) 3:57. https://doi.org/10.3390/jof3040057

Article  Google Scholar 

Chen Q, An B, Peng X et al (2023) Simplified and effective RNA interference and CRISPR-Cas9 systems for Cryptococcus neoformans. J Basic Microbiol 63:1095–1105. https://doi.org/10.1002/jobm.202300102

Article  CAS  PubMed  Google Scholar 

Cho H-J, Son S-H, Chen W et al (2022) Regulation of Conidiogenesis in Aspergillus Flavus. Cells 11:2796. https://doi.org/10.3390/cells11182796

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi Y-H, Park S-H, Kim S-S et al (2023) Functional characterization of the GNAT Family histone acetyltransferase Elp3 and GcnE in aspergillus fumigatus. Int J Mol Sci 24:2179. https://doi.org/10.3390/ijms24032179

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui X, Wang L, Lü Y, Yue C (2022) Development and research progress of anti-drug resistant fungal drugs. J Infect Public Health 15:986–1000. https://doi.org/10.1016/j.jiph.2022.08.004

Article  PubMed  Google Scholar 

Dagenais TRT, Keller NP (2009) Pathogenesis of aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev 22:447–465. https://doi.org/10.1128/CMR.00055-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Darbari E, Zare-Abdollahi D, Alavi A et al (2020) A mutation in DOP1B identified as a probable cause for autosomal recessive Peters anomaly in a consanguineous family. Mol Vis 26:757–765

CAS  PubMed  PubMed Central  Google Scholar 

Dyer PS, O’Gorman CM (2012) Sexual development and cryptic sexuality in fungi: insights from aspergillus species. Fems Microbiol Rev 36:165–192. https://doi.org/10.1111/j.1574-6976.2011.00308.x

Article  CAS  PubMed  Google Scholar 

Earle K, Valero C, Conn DP et al (2023) Pathogenicity and virulence of aspergillus fumigatus. Virulence 14:2172264. https://doi.org/10.1080/21505594.2023.2172264

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fazeli G, Beer KB, Geisenhof M et al (2020) Loss of the major phosphatidylserine or phosphatidylethanolamine flippases differentially affect phagocytosis. Front Cell Dev Biol 8:648. https://doi.org/10.3389/fcell.2020.00648

Article  PubMed  PubMed Central  Google Scholar 

Gillingham AK, Whyte JRC, Panic B, Munro S (2006) Mon2, a relative of large Arf Exchange Factors, recruits Dop1 to the golgi apparatus. J Biol Chem 281:2273–2280. https://doi.org/10.1074/jbc.M510176200

Article  CAS  PubMed  Google Scholar 

Goldmann M, Schmidt F, Cseresnyés Z et al (2023) The lipid raft-Associated protein stomatin is required for Accumulation of Dectin-1 in the Phagosomal Membrane and for full activity of macrophages against aspergillus fumigatus. mSphere 8:e0052322. https://doi.org/10.1128/msphere.00523-22

Article  CAS  PubMed  Google Scholar 

Guipponi M, Brunschwig K, Chamoun Z et al (2000) C21orf5, a Novel Human chromosome 21 Gene, has a Caenorhabditis elegans Ortholog (pad-1) required for embryonic patterning. Genomics 68:30–40. https://doi.org/10.1006/geno.2000.6250

Article  CAS  PubMed  Google Scholar 

Gurgel ILdaS, Jorge KT, de Malacco OS, de O NLS et al (2019) The aspergillus fumigatus mucin MsbA regulates the cell Wall Integrity Pathway and Controls Recognition of the Fungus by the Immune System. mSphere 4:e00350–e00319. https://doi.org/10.1128/mSphere.00350-19

Article  CAS  PubMed  PubMed Central  Google Scholar 

He C, Wei Q, Xu J et al (2023) bHLH transcription factor EcdR controls conidia production, pigmentation and virulence in aspergillus fumigatus. Fungal Genet Biol 164:103751. https://doi.org/10.1016/j.fgb.2022.103751

Article  CAS  PubMed  Google Scholar 

Honorato L, de Araujo JFD, Ellis CC et al (2022) Extracellular vesicles regulate Biofilm formation and yeast-to-Hypha differentiation in Candida albicans. mBio 13:e0030122. https://doi.org/10.1128/mbio.00301-22

Article  CAS  PubMed  Google Scholar 

Jia X, Chen F, Pan W et al (2014) Gliotoxin promotes aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation. Microbes Infect 16:491–501. https://doi.org/10.1016/j.micinf.2014.03.001

Article  CAS  PubMed  Google Scholar 

Kadooka C, Hira D, Tanaka Y et al (2022) Mnt1, an α-(1 → 2)-mannosyltransferase responsible for the elongation of N-glycans and O-glycans in aspergillus fumigatus. Glycobiology 32:1137–1152. https://doi.org/10.1093/glycob/cwac049

Article  CAS  PubMed  Google Scholar 

Kashyap VH, Mishra A, Bordoloi S et al (2023) Exploring the intersection of aspergillus fumigatus biofilms, infections, immune response and antifungal resistance. Mycoses 66:737–754. https://doi.org/10.1111/myc.13619

Article  CAS  PubMed  Google Scholar 

Kowalski CH, Morelli KA, Schultz D et al (2020) Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proc Natl Acad Sci USA 117:22473–22483. https://doi.org/10.1073/pnas.2003700117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulišová M, Maťátková O, Brányik T et al (2023) Detection of microscopic filamentous fungal biofilms - choosing the suitable methodology. J Microbiol Methods 205:106676. https://doi.org/10.1016/j.mimet.2023.106676

Article  CAS  PubMed  Google Scholar 

Morelli KA, Kerkaert JD, Cramer RA (2021) Aspergillus Fumigatus biofilms: toward understanding how growth as a multicellular network increases antifungal resistance and disease progression. PLoS Pathog 17:e1009794. https://doi.org/10.1371/journal.ppat.1009794

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakane Y, Adachi T, Voigt B et al (2002) A novel mutation vf causing abnormal vacuoles in the Central Nervous System maps on Rat chromosome 8. Exp Anim 51:149–155. https://doi.org/10.1538/expanim.51.149

Article  CAS  PubMed  Google Scholar 

Paget J, Spreeuwenberg P, Charu V et al (2019) Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J Global Health 9:020421. https://doi.org/10.7189/jogh.09.020421

Article 

Comments (0)

No login
gif