Serial positron-emission tomography after induction therapy as a predictor of prognostic outcomes for patients with thymic carcinoma

Shintani Y, Inoue M, Kawamura T, Funaki S, Minami M, Okumura M. Multimodality treatment for advanced thymic carcinoma: outcomes of induction therapy followed by surgical resection in 16 cases at a single institution. Gen Thorac Cardiovasc Surg. 2015;63(3):159–63.

Article  PubMed  Google Scholar 

Okereke IC, Kesler KA, Freeman RK, Rieger KM, Birdas TJ, Ascioti AJ, et al. Thymic carcinoma: outcomes after surgical resection. Ann Thorac Surg. 2012;93(5):1668–73.

Article  PubMed  Google Scholar 

Takeda SI, Sawabata N, Inoue M, Koma M, Maeda H, Hirano H. Thymic carcinoma. Clinical institutional experience with 15 patients. Eur J Card Thor Surg. 2004;26(2):401–6.

Article  Google Scholar 

Fukumoto K, Taniguchi T, Ishikawa Y, Kawaguchi K, Fukui T, Kato K, et al. The utility of [18F]-fluorodeoxyglucose positron emission tomography-computed tomography in thymic epithelial tumours. European J Card Thor Surg. 2012;42:6.

Google Scholar 

Treglia G, Sadeghi R, Giovanella L, Cafarotti S, Filosso P, Lococo F. Is 18F-FDG PET useful in predicting the WHO grade of malignancy in thymic epithelial tumors? A meta-analysis. Vol. 86, Lung Cancer. Elsevier Ireland Ltd; 2014. p. 5–13.

Terzi A, Bertolaccini L, Rizzardi G, Luzzi L, Bianchi A, Campione A, et al. Usefulness of 18-F FDG PET/CT in the pre-treatment evaluation of thymic epithelial neoplasms. Lung Cancer. 2011;74(2):239–43.

Article  PubMed  Google Scholar 

Kanou T, Funaki S, Minami M, Ose N, Kimura T, Fukui E, et al. Usefulness of positron-emission tomography for predicting the World Health Organization grade of thymic epithelial tumors. Thorac Cancer. 2022;13(11):1651–6.

Article  PubMed  PubMed Central  Google Scholar 

Watanabe T, Shimomura H, Mutoh T, Saito R, Goto R, Yamada T, et al. Positron emission tomography/computed tomography as a clinical diagnostic tool for anterior mediastinal tumors. Surg Today. 2019;49(2):143–9.

Article  CAS  PubMed  Google Scholar 

Fischer B, Lassen U, Mortensen J, Larsen S, Loft A, Bertelsen A, et al. Preoperative staging of lung cancer with combined PET–CT. N Engl J Med. 2009;361(1):32–9.

Article  CAS  PubMed  Google Scholar 

Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS ONE. 2016;11:1.

Google Scholar 

Groheux D, Sanna A, Majdoub M, De Cremoux P, Giacchetti S, Teixeira L, et al. Baseline tumor 18F-FDG uptake and modifications after 2 cycles of neoadjuvant chemotherapy are prognostic of outcome in ER1/HER22 breast cancer. J Nucl Med. 2015;56(6):824–31.

Article  CAS  PubMed  Google Scholar 

Kittaka H, Takahashi H, Ohigashi H, Gotoh K, Yamada T, Tomita Y, et al. Role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in predicting the pathologic response to preoperative chemoradiation therapy in patients with resectable T3 pancreatic cancer. World J Surg. 2013;37(1):169–78.

Article  PubMed  Google Scholar 

Maffione AM, Marzola MC, Capirci C, Colletti PM, Rubello D. Value of 18F-FDG PET for predicting response to neoadjuvant therapy in rectal cancer: systematic review and meta-analysis. Am J Roentgenol. 2015;204(6):1261–8.

Article  Google Scholar 

Cerfolio RJ, Bryant AS, Winokur TS, Ohja B, Bartolucci AA. Repeat FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg. 2004;78(6):1903–9.

Article  PubMed  Google Scholar 

Ozeki N, Kawaguchi K, Fukui T, Fukumoto K, Nakamura S, Okasaka T, et al. (2015) Which variables should be considered in patients with stage II and III non-small cell lung cancer after neoadjuvant therapy? Vol. 77 Nagoya J Med Sci

Kukar M, Alnaji RM, Jabi F, Platz TA, Attwood K, Nava H, et al. (2015) Role of repeat 18F-fluorodeoxyglucose positron emission tomography examination in predicting pathologic response following neoadjuvant chemoradiotherapy for esophageal adenocarcinoma. In: JAMA Surgery. American Medical Association; p. 555–62

Cheng L, Zhang J, Wang Y, Xu X, Zhang Y, Zhang Y, et al. Textural features of 18F-FDG PET after two cycles of neoadjuvant chemotherapy can predict pCR in patients with locally advanced breast cancer. Ann Nucl Med. 2017;31(7):544–52.

Article  CAS  PubMed  Google Scholar 

Kaira K, Murakami H, Miura S, Kaira R, Akamatsu H, Kimura M, et al. 18F-FDG uptake on PET helps predict outcome and response after treatment in unresectable thymic epithelial tumors. Ann Nucl Med. 2011;25(4):247–53.

Article  PubMed  Google Scholar 

Thomas A, Mena E, Kurdziel K, Venzon D, Khozin S, Berman AW, et al. 18F-fluorodeoxyglucose positron emission tomography in the management of patients with thymic epithelial tumors. Clin Cancer Res. 2013;19(6):1487–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukumoto K, Fukui T, Okasaka T, Kawaguchi K, Nakamura S, Hakiri S, et al. The role of 18F-fluorodeoxyglucose positron emission tomography-computed tomography for predicting pathologic response after induction therapy for thymic epithelial tumors. World J Surg. 2017;41(7):1828–33.

Article  PubMed  Google Scholar 

Korst RJ, Bezjak A, Blackmon S, Choi N, Fidias P, Liu G, et al. Neoadjuvant chemoradiotherapy for locally advanced thymic tumors: a phase II, multi-institutional clinical trial. J Thor Cardiovasc Surg. 2014;147:1.

Article  Google Scholar 

Koga K, Matsuno Y, Noguchi M, Mukai K, Asamura H, Goya T, et al. A review of 79 thymomas: Modification of staging system and reappraisal of conventional division into invasive and non-invasive thymoma. Pathol Int. 1994;44(5):359–67.

Article  CAS  PubMed  Google Scholar 

Japan Lung Cancer Society (2010). General Rule for Clinical and Pathological Record of Lung Cancer, 6th ed. Tokyo: Kanehara; 176–177.

Ose N, Sawabata N, Minami M, Inoue M, Shintani Y, Kadota Y, et al. Lymph node metastasis diagnosis using positron emission tomography with 2-[18F] fluoro-2-deoxy-d-glucose as a tracer and computed tomography in surgical cases of non-small cell lung cancer. Eur J Cardiothorac Surg. 2012;42(1):89–92.

Article  PubMed  Google Scholar 

Eren G, Kupik O, Singh A. Necrosis on pre-radiotherapy 18F-FDG PET/CT is a predictor for complete metabolic response in patients with non-small cell lung cancer. Medicine (US). 2022;101:20.

Google Scholar 

Zhai Y, Chen D, Gao Y, Hui Z, Xue L, Zhou Z, et al. Role of modern neoadjuvant chemoradiotherapy in locally advanced thymic epithelial neoplasms. Tumori. 2021;107(5):407–15.

Article  CAS  PubMed  Google Scholar 

Lim YJ, Song C, Kim JS. Improved survival with postoperative radiotherapy in thymic carcinoma: a propensity-matched analysis of Surveillance, Epidemiology, and End Results (SEER) database. Lung Cancer. 2017;1(108):161–7.

Article  Google Scholar 

Bosset JF, Calais G, Mineur L, Maingon P, Stojanovic-Rundic S, Bensadoun RJ, et al. Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: Long-term results of the EORTC 22921 randomised study. Lancet Oncol. 2014;15(2):184–90.

Article  CAS  PubMed  Google Scholar 

Sainato A, Cernusco Luna Nunzia V, Valentini V, De Paoli A, Maurizi ER, Lupattelli M, et al. No benefit of adjuvant Fluorouracil Leucovorin chemotherapy after neoadjuvant chemoradiotherapy in locally advanced cancer of the rectum (LARC): long term results of a randomized trial (I-CNR-RT). Radiother Oncol. 2014;113(2):223–9.

Article  PubMed  Google Scholar 

Guenther LM, Rowe RG, Acharya PT, Swenson DW, Meyer SC, Clinton CM, et al. Response Evaluation Criteria in Solid Tumors (RECIST) following neoadjuvant chemotherapy in osteosarcoma. Pediatr Blood Cancer. 2018. https://doi.org/10.1002/pbc.26896.

Article  PubMed  Google Scholar 

Qu Y, Emoto K, Eguchi T, Aly RG, Zheng H, Chaft JE, et al. Pathologic assessment after neoadjuvant chemotherapy for NSCLC: importance and implications of distinguishing adenocarcinoma from squamous cell carcinoma. J Thorac Oncol. 2019;14(3):482–93.

Article  PubMed  Google Scholar 

Castello A, Rossi S, Lopci E. 18F-FDG PET/CT in restaging and evaluation of response to therapy in lung cancer: state of the art. Curr Radiopharm. 2019;13(3):228–37.

Article  Google Scholar 

Sert F, Balci B, Ergonul AG, Yalman D, Ozkok S (2023). Evaluation of the relationship between the eighth edition of TNM staging, the mMasoaka, and World Health Organization histopathological classification for thymoma. J Cancer Res Ther 19(7):2025–30.

Okumura M, Yoshino I, Yano M, Watanabe SI, Tsuboi M, Yoshida K, et al. Tumour size determines both recurrence-free survival and disease-specific survival after surgical treatment for thymoma. Eur J Cardiothorac Surg. 2019;56(1):174–81.

Article  PubMed  Google Scholar 

Yudai M, Kanou Takashi ·, Hiroto I, Fukui Eriko ·, Kimura Toru ·, Naoko · Ose, et al. The role of calcification in predicting invasion of thymoma to adjacent organs. 123AD [cited 2024 Apr 10]; Available from: https://doi.org/10.1007/s00595-024-02826-w

Miyashita Y, Kanou T, Ishida H, Fukui E, Ose N, Funaki S, et al. Prognostic impact of tumor volume in patients with complete resection of thymoma. Thorac Cancer. 2022;13(7):1021–6.

Article  PubMed  PubMed Central  Google Scholar 

Han S, Kim Yl OHJS, Seo SY, Park MJ, Lee GD, et al. Diagnostic and prognostic values of 2-[18F]FDG PET/CT in resectable thymic epithelial tumour. Eur Radiol. 2022;32(2):1173–83.

Article  PubMed  Google Scholar 

Shiono S, Abiko M, Okazaki T, Chiba M, Yabuki H, Sato T. Positron emission tomography for predicting recurrence in stage I lung adenocarcinoma: Standardized uptake value corrected by mean liver standardized uptake value. Eur J Cardiothorac Surg. 2011;40(5):1165–9.

PubMed  Google Scholar 

Comments (0)

No login
gif