Cervical Cancer Severity Characterization Using Machine Learning Techniques

Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst Appl. 1998;13(4):18–28. https://doi.org/10.1109/5254.708428.

Article  Google Scholar 

Breiman L. Random forests. Mach Learn. 2001;45:5–32. https://doi.org/10.1023/A:1010933404324.

Article  Google Scholar 

Stylianou G, Farin G. Shape feature extraction. In: Farin G, Hamann B, Hagen H, editors. Hierarchical and geometrical methods in scientific visualization. Mathematics and visualization. Berlin: Springer; 2003. https://doi.org/10.1007/978-3-642-55787-3_16.

Chapter  Google Scholar 

Mucherino A, Papajorgji PJ, Pardalos PM. k-nearest neighbor classification. In: Data mining in agriculture. Springer optimization and its applications, vol 34. Springer, New York; 2009. https://doi.org/10.1007/978-0-387-88615-2_4.

Plissiti ME, Nikou C, Charchanti A. Watershed-based segmentation of cell nuclei boundaries in Pap smear images. In: Proceedings of the 10th IEEE international conference on information technology and applications in biomedicine. p. 1–4 (2010).

Liang M, Zheng G, Huang X, Milledge G, Tokuta A. Identification of abnormal cervical regions from colposcopy image sequences. In: 21st international conference on computer graphics, visualization and computer vision. p. 130–136 (2013).

Lakshmi GK, Krishnaveni K. Multiple feature extraction from cervical cytology images by Gaussian mixture model. In: World congress on computing and communication technologies (WCCCT). p. 309–311 (2014).

Paul PR, Bhowmik MK, Bhattacharjee D. Automated cervical cancer detection using Pap smear images. In: Proceedings of fourth international conference on soft computing for problem solving. p. 267–278 (2015).

Singh S, Tejaswini V, Murthy RP, Mutgi A. Neural network based automated system for diagnosis of cervical cancer. Int J Biomed Clin Eng. 2015. https://doi.org/10.4018/IJBCE.2015070103.

Article  Google Scholar 

Sukumar P, Gnanamurthy RK. Computer-aided detection of cervical cancer using Pap smear images based on hybrid classifier. Int J Appl Eng Res. 2015;10(8):21021–32.

Google Scholar 

Sharma M, Singh SK, Agrawal P, Madaan V. Classification of clinical dataset of cervical cancer using KNN. Indian J Sci Technol. 2016;9(28):1–5.

Article  Google Scholar 

Bora K, Chowdhury M, Mahanta LB, Kundu MK, Das AK. Automated classification of Pap smear images to detect cervical dysplasia. Comput Methods Programs Biomed. 2017;138:31–47.

Article  PubMed  Google Scholar 

Hyeon J, Choi HJ, Lee KN, Lee BD. Automating Papanicolaou test using deep convolutional activation feature. In: 18th IEEE international conference on mobile data management (MDM). p. 382–385 (2017).

Makris GM, Pouliakis A, Siristatidis C, Margari N, Terzakis E, Koureas N, Karakitsos P. Image analysis and multi-layer perceptron artificial neural networks for the discrimination between benign and malignant endometrial lesions. Diagn Cytopathol. 2017;45(3):202–11.

Article  PubMed  Google Scholar 

Kudva V, Prasad K, Guruvare S. Automation of detection of cervical cancer using convolutional neural networks. Crit Rev Biomed Eng. 2018;46(2):135–45.

Article  PubMed  Google Scholar 

William W, Ware A, Basaza-Ejiri AH, Obungoloch J. A review of image analysis and machine learning techniques for automated cervical cancer screening from Pap-smear images. Comput Methods Programs Biomed. 2018;164:15–22.

Article  PubMed  Google Scholar 

Lin H, Hu Y, Chen S, Yao J, Zhang L. Fine-grained classification of cervical cells using morphological and appearance based convolutional neural networks. IEEE Access. 2019;7:71541–9.

Article  Google Scholar 

Rahaman MM, et al. A survey for cervical cytopathology image analysis using deep learning. IEEE Access. 2020;8:61687–710. https://doi.org/10.1109/ACCESS.2020.2983186.

Article  Google Scholar 

Sinaga KP, Yang MS. Unsupervised K-means clustering algorithm. IEEE. Access. 2020;8:80716–27. https://doi.org/10.1109/ACCESS.2020.2993347.

Article  Google Scholar 

Bravo-Ortiz MA, Arteaga-Arteaga HB, Tabares-Soto KR, Padilla-Buritica JI, Orozco-Arias S. Cervical cancer classification using convolutional neural networks, transfer learning and data augmentation. Rev EIA. 2021;18(35):100–11.

Google Scholar 

Elayaraja P, Kumarganesh S, Martin Sagayam K, Dang H, Pomplun M. An efficient approach for detection and classification of cancer regions in cervical images using optimization-based CNN classification approach. J Intell Fuzzy Syst. 2022;43:1023–33.

Article  Google Scholar 

Tan SL, Selvachandran G, Ding W, et al. Cervical cancer classification from Pap smear images using deep convolutional neural network models. Interdiscip Sci Comput Life Sci. 2023;16:16–38.

Article  Google Scholar 

Comments (0)

No login
gif