Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, AWARE Investigators (2017) Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376:11–20
Sutherland SM, Ji J, Sheikhi FH, Widen E, Tian L, Alexander SR, Ling XB (2013) AKI in hospitalized children. Clin J Am Soc Nephrol 8:1661–1669
Article PubMed PubMed Central Google Scholar
Sanchez-Pinto LN, Goldstein SL, Schneider JB, Khemani RG (2015) Association between progression and improvement of acute kidney injury and mortality in critically ill children. Pediatr Crit Care Med 16:703–710
Alkandari O, Eddington KA, Hyder A, Gauvin F, Ducruet T, Gottesman R, Phan V, Zappitelli M (2011) Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care 15:R146
Article PubMed PubMed Central Google Scholar
Greenberg JH, Coca S, Parikh CR (2014) Long-term risk of chronic kidney disease and mortality in children after acute kidney injury: a systematic review. BMC Nephrol 15:184
Article PubMed PubMed Central Google Scholar
Greenberg JH, Zappitelli M, Devarajan P, Thiessen-Philbrook HR, Krawczeski C, Li S, Garg AX, Coca S, Parikh CR, TRIBE-AKI Consortium (2016) Kidney outcomes 5 years after pediatric cardiac surgery: the TRIBE-AKI study. JAMA Pediatr 170:1071–1078
Article PubMed PubMed Central Google Scholar
Hessey E, Perreault S, Dorais M, Roy L, Zappitelli M (2019) Acute kidney injury in critically ill children and subsequent chronic kidney disease. Can J Kidney Health Dis 6:2054358119880188
Article PubMed PubMed Central Google Scholar
Hessey E, Perreault S, Roy L, Dorais M, Samuel S, Phan V, Lafrance JP, Zappitelli M (2020) Acute kidney injury in critically ill children and 5-year hypertension. Pediatr Nephrol 35:1097–1107
Robinson CH, Jeyakumar N, Luo B, Wald R, Garg AX, Nash DM, McArthur E, Greenberg JH, Askenazi D, Mammen C, Thabane L, Goldstein S, Parekh RS, Zappitelli M, Chanchlani R (2021) Long-term kidney outcomes following dialysis-treated childhood acute kidney injury: a population-based cohort study. J Am Soc Nephrol 32:2005–2019
Article PubMed PubMed Central Google Scholar
Kulvichit W, Kellum J, Srisawat N (2021) Biomarkers in acute kidney injury. Crit Care Clin 37:385–398
Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238
Article CAS PubMed Google Scholar
Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, NGAL Meta-analysis Investigator Group (2009) Accuracy of neutrophil gelatinase associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta analysis. Am J Kidney Dis 54:1012–1024
Article CAS PubMed Google Scholar
Mårtensson J, Bellomo R (2014) The rise and fall of NGAL in acute kidney injury. Blood Purif 37:304–310
Krzych ŁJ, Czempik PF (2019) Impact of furosemide on mortality and the requirement for renal replacement therapy in acute kidney injury: a systematic review and meta-analysis of randomised trials. Ann Intensive Care 9:85
Article CAS PubMed PubMed Central Google Scholar
Xie CM, Yao YT, Yang K, Shen MQ, He LX, Dai Z, Evidence in Cardiovascular Anesthesia (EICA) Group (2022) Furosemide does not reduce the incidence of postoperative acute kidney injury in adult patients undergoing cardiac surgery: a PRISMA-compliant systematic review and meta-analysis. J Card Surg 37:4850–4860
Chawla LS, Davison DL, Brasha-Mitchell E, Koyner JL, Arthur JM, Shaw AD, Tumlin JA, Trevino SA, Kimmel PL, Seneff MG (2013) Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care 17:R207
Article PubMed PubMed Central Google Scholar
Lumlertgul N, Peerapornratana S, Trakarnvanich T, Pongsittisak W, Surasit K, Chuasuwan A, Tankee P, Tiranathanagul K, Praditpornsilpa K, Tungsanga K, Eiam-Ong S, Kellum JA, Srisawat N, FST Study Group (2018) Early versus standard initiation of renal replacement therapy in furosemide stress test non-responsive acute kidney injury patients (the FST trial). Crit Care 22:101
Article PubMed PubMed Central Google Scholar
McMahon BA, Chawla LS (2021) The furosemide stress test: current use and future potential. Ren Fail 43:830–839
Article PubMed PubMed Central Google Scholar
Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138
Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, De Zeeuw D, Hostetter TH, Lameire N, Eknoyan G (2005) Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 67:2089–2100
Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637
Article PubMed PubMed Central Google Scholar
Pottel H, Vrydags N, Mahieu B, Vandewynckele E, Croes K, Martens F (2008) Establishing age/sex related serum creatinine reference intervals from hospital laboratory data based on different statistical methods. Clin Chim Acta 396:49–55
Article CAS PubMed Google Scholar
Kashani K, Cheungpasitporn W, Ronco C (2017) Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med 55:1074–1089
Article CAS PubMed Google Scholar
Khorashadi M, Beunders R, Pickkers P, Legrand M (2020) Proenkephalin: a new biomarker for glomerular filtration rate and acute kidney injury. Nephron 144:655–661
Article CAS PubMed Google Scholar
Chen JJ, Chang CH, Huang YT, Kuo G (2020) Furosemide stress test as a predictive marker of acute kidney injury progression or renal replacement therapy: a systemic review and meta-analysis. Crit Care 24:202
Article PubMed PubMed Central Google Scholar
Kakajiwala A, Kim JY, Hughes JZ, Costarino A, Ferguson J, Gaynor JW, Furth SL, Blinder JJ (2017) Lack of furosemide responsiveness predicts acute kidney injury in infants after cardiac surgery. Ann Thorac Surg 104:1388–1394
Borasino S, Wall KM, Crawford JH, Hock KM, Cleveland DC, Rahman F, Martin KD, Alten JA (2018) Furosemide response predicts acute kidney injury after cardiac surgery in infants and neonates. Pediatr Crit Care Med 19:310–317
Penk J, Gist KM, Wald EL, Kitzmiller L, Webb TN, Li Y, Cooper DS, Goldstein SL, Basu RK (2019) Furosemide response predicts acute kidney injury in children after cardiac surgery. J Thorac Cardiovasc Surg 157:2444–2451
Article CAS PubMed Google Scholar
Hasson DC, Zhang B, Krallman K, Rose JE, Kempton KM, Steele P, Devarajan P, Goldstein SL, Alder MN (2023) Acute kidney injury biomarker olfactomedin 4 predicts furosemide responsiveness. Pediatr Nephrol 38:3153–3161
McGalliard RJ, McWilliam SJ, Maguire S, Jones CA, Jennings RJ, Siner S, Newland P, Peak M, Chesters C, Jeffers G, Broughton C, McColl L, Lane S, Paulus S, Cunliffe NA, Baines P, Carrol ED (2020) Identifying critically ill children at high risk of acute kidney injury and renal replacement therapy. PLoS One 15:e0240360
Article CAS PubMed PubMed Central Google Scholar
Kari JA, Shalaby MA, Sofyani K, Sanad AS, Ossra AF, Halabi RS, Aljuhani MH, Toffaha WM, Moria FA, Sabry S, Ahmed HA, Alhasan KA, Sharief S, Safdar O (2018) Urinary neutrophil gelatinase-associated lipocalin (NGAL) and serum cystatin C measurements for early diagnosis of acute kidney injury in children admitted to PICU. World J Pediatr 14:134–142
Comments (0)